Published October 31, 2020 | Version v1
Journal article Open

ANALYSIS OF DYNAMIC CHARACTERISTICS OF THE INVERTER OPERATING ON A COMPLEX LOAD

  • 1. Admiral Makarov National University of Shipbuilding

Description

A simulation model of a converter with soft switching of transistors has been created. New calculation methods and means of measuring the equivalent frequency characteristics of converting devices with negative feedback to the problems of stability analysis have been applied. A comparative analysis of the calculated frequency characteristics of the converter in the normal operation mode with the characteristics of its linear model is presented. The features of calculating the equivalent frequency characteristics of the loop amplification of key devices are considered. It is noted that it is the equivalent frequency characteristics of the loop amplification that describe the relationship of frequency properties with the dynamics of voltage converters with pulse-width modulation and make it possible to reliably determine the real stability margins, predict the generation modes and open up the possibility of obtaining maximum negative feedback in a given frequency band of key devices. The non-minimal phase properties of the converter significantly complicate the achievement of high-quality stabilization of the output current (stabilization coefficient) of pulse stabilizers using only the deflection control principle. A successful solution to the problem is provided by the use of the principle of combined control. Compensation of the disturbance effect (changes in the supply voltage) gives a much better result than countering it through the feedback loop. It is quite realistic to exclude the influence of the input voltage u(t) on the output current i2 in a static mode (u=const) and in the absence of a negative feedback loop, which provides  for u=const in a steady state, and to provide better dynamic properties of the converter. The influence of the nonlinear properties of pulse width modulation on stability is manifested in the considered characteristics in the form of an additional phase shift and resonant bursts in the vicinity of the clock frequency subharmonics. Additional feedbacks introduced into the control loop make it possible to solve synthesis problems using the most simple technical means

Files

Analysis of dynamic characteristics of the inverter operating on a complex load.pdf

Additional details

References

  • Milyutin, V. S., Kataev, R. F. (2016). Istochniki pitaniya i oborudovanie dlya elektricheskoy svarki plavleniem. Moscow: Akademiya, 356.
  • Vereshchago, E. N. Fel'dsher, I. F., Kostyuchenko, V. I. (2007). Kvazirezonansnye invertory v ustroystvah elektropitaniya dlya vozdushno-plazmennoy rezki. Tekhnichna elektrodynamika, 4, 8–11.
  • Vereshchago, E. N., Kvasnitskiy, V. F., Miroshnichenko, L. N., Pentegov, I. V. (2000). Shemotehnika invertornyh istochnikov pitaniya dlya dugovoy nagruzki. Nikolaev: UGMTU, 283.
  • Gladkov, E. A., Brodyagin, V. N., Perkovskiy, R. A. (2014). Avtomatizatsiya svarochnyh protsessov. Moscow: Izdatel'stvo MGTU im. N. E. Baumana, 421.
  • Wang, R., Xue, J. (2012). Theoretical analysis for output characteristics of soft-switching arc welding inverter. Transactions of the China Welding Institution, 12 (4), 29–35.
  • Dmitrikov, V. F., Shushpanov, D. V. (2018). Ustoychivost' i elektromagnitnaya sovmestimost' ustroystv i sistem elektropitaniya. Moscow: Nauchno-tehnicheskoe izdatel'stvo "Goryachaya liniya-Telekom", 540.
  • Nagarajan, C., Madheswaran, M. (2011). Performance analysis of LCL-T resonant converter with fuzzy/PID controller using state space analysis. Electrical Engineering, 93 (3), 167–178. doi: https://doi.org/10.1007/s00202-011-0203-9
  • De Simone, S. (2014). LLC Resonant Half-Bridge Converter Design Guideline. Application Note AN2450.
  • Ridley, R. B. (2012). Power Supply Design, Volume 1: Control. Ridley Engineering, Inc., 168.
  • Verna, S., Singh, S. K., Rao, A. G. (2013). Overview of control techniques for DC-DC converters. Research Journal of Engineering Sciences, 2 (8), 18–21.
  • Smirnov, V. S. (2007). Ekvivalentnye chastotnye harakteristiki tranzistornyh klyuchevyh ustroystv s otritsatel'noy obratnoy svyaz'yu (matematicheskoe modelirovanie, metodika izmereniy i optimizatsii). Sankt-Peterburg: SPbGUT, 17.
  • Belov, G. A. (2016). Comparison of the Discrete Dynamic Models of Impulse Converters. Elektrichestvo, 11, 35–43.
  • Aleksandrov, A. G. (2010). Chastotnaya teoriya avtomaticheskogo upravleniya (chastotnoe upravlenie). Kn. 1. Moscow: EPI MISiS, 320.
  • Shushpanov, D. V. (2005). Vysokoeffektivnye impul'snye preobrazovateli napryazheniya s ShIM i raspredelennye sistemy elektropitaniya na ih osnove. Sankt-Peterburg: SPbGUT, 17.
  • Sidorets, V. N., Pentegov, I. V. (2013). Determinirovanniy haos v nelineynyh tsepyah s elektricheskoy dugoy. Kyiv: Mezhdunarodnaya assotsiatsiya «Svarka», 272.
  • Vereshchago, E. N., Kostyuchenko, V. I. (2014). A simulation model of electric arc. Russian Electrical Engineering, 85 (6), 376–381. doi: https://doi.org/10.3103/s106837121406011x
  • Korshunov, A. I. (2013). Povyshenie kachestva stabilizatsii vyhodnogo napryazheniya impul'snogo preobrazovatelya postoyannogo toka. Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie, 56 (3), 48–57.
  • Samylin, I. N., Smirnov, V. S., Filin, V. A. (2004). Otsenka predel'noy glubiny otritsatel'noy obratnoy svyazi v ShIM-preobrazovatelyah ponizhayushchego tipa. Prakticheskaya silovaya elektronika, 14, 12–18.
  • Bakalov, V. P., Dmitrikov, V. F., Kruk, B. I. (2013). Osnovy teorii tsepey. Moscow: Goryachaya liniya - Telekom, 597.
  • Vereschago, E. N., Kostyuchenko, V. I. (2019). Research of static and dynamic characteristics of a voltage converter with soft switching running on arc load. Electrical Engineering and Power Engineering, 2, 8–22. doi: https://doi.org/10.15588/1607-6761-2019-2-1