Reliance on Science in Patenting
Description
This dataset contains both front-page and in-text citations from patents to scientific articles. If you use the data, please cite these two articles:
1. M. Marx, & A. Fuegi, "Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles" (2020), Strategic Management Journal 41(9):1572-1594. (https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3145)
2. M. Marx & A. Fuegi, "Reliance on Science by Inventors: Hybrid Extraction of In-text Patent-to-Article Citations." NBER Working Paper 27987.(https://www.nber.org/papers/w27987)
The datafile containing the citations is _pcs_mag_doi_pmid.tsv. DOIs and PMIDs provided where available. Each citation has the applicant/examiner flag, confidence score (1-10), and whether the reference was a) only on the front page, b) only in the body text, or c) in both. _data_description.pdf has full details. bodytextknowngood.tsv contains the known-good references for calculating recall. bodytextpatrefstopatents.tsv contains references to patents in the body text of patents.
The remaining files redistribute the Microsoft Academic Graph. Please also cite Sinha, A, et al. 2015. Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15 Companion). ACM, New York, NY, USA, 243-246.
These data are under an Open Data Commons Attribution license (ODC-By); use them for anything as long as you cite us! Source code for front-page matches: https://github.com/mattmarx/reliance_on_science. Questions & feedback to support@relianceonscience.org.
Files
__datadescription.pdf
Files
(45.0 GB)
Name | Size | Download all |
---|---|---|
md5:869edb358e771120b87fb44ec9f1317a
|
227.5 kB | Preview Download |
md5:c18697804150e65773cb3b18d305cf1d
|
2.6 GB | Download |
md5:9a6e4d47890a67f763b1a32531902f47
|
2.6 GB | Preview Download |
md5:0d20284aadeb443ad48eac1d00ae503f
|
272.1 kB | Download |
md5:eb465e9b4476df4a2891201e0bc3d524
|
838.5 MB | Download |
md5:8af6968fcd563eed506f558d0272bbce
|
80.7 kB | Preview Download |
md5:79d4236b9ba996f76c7c6629bed01c34
|
13.7 MB | Preview Download |
md5:5bb26fd59a0f9b9e2a44a4a124d44b6c
|
1.0 GB | Preview Download |
md5:c2f351238565d2216136aeaacdf55914
|
5.2 MB | Preview Download |
md5:7c66b0a4d51721179ce103ce9fdb35c9
|
8.1 MB | Preview Download |
md5:5a723a19885ce4887e3a1eca93c2c9da
|
1.5 MB | Preview Download |
md5:bbe297e3f6a71b79d3b754ab00c3eba0
|
2.2 GB | Preview Download |
md5:c162a0340ae2ebb35944baea39f49170
|
4.7 GB | Preview Download |
md5:06fde55e39f5e3b43d1c4b5278122946
|
3.8 GB | Preview Download |
md5:7ed9650a63150ade78c31dc748c3b4c1
|
8.7 GB | Preview Download |
md5:e3173f495d5765b8c2d73ddd44dc97fa
|
482.5 MB | Preview Download |
md5:d83779d167fbe4d61469e1629c0c4c1f
|
7.9 GB | Preview Download |
md5:75a9b30a05b7e33feee1d39a38d846c8
|
855.3 MB | Preview Download |
md5:fcf4d4174f97f7cfc8fa98971fee50ac
|
7.4 GB | Preview Download |
md5:faa5bb2e60c06a5b2eda0508df8785e3
|
1.2 GB | Preview Download |
md5:bfcc4fa1bb119c2d77305a04823fbe01
|
663.5 MB | Preview Download |
Additional details
References
- Marx, Matt and Aaron Fuegi, "Reliance on Science in Patenting: USPTO Front-Page Citations to Scientific Articles" (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686)
- Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion). ACM, New York, NY, USA, 243-246