iSDAsoil: soil silt content (USDA system) for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Authors/Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil silt content in % predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, LandPKS, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_silt_tot_psa_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil silt content mean value,
- sol_silt_tot_psa_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil silt content model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: silt_tot_psa
R-square: 0.64
Fitted values sd: 11.9
RMSE: 8.92
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-63.746 -3.631 -0.526 2.630 72.486
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -35.876865 36.887592 -0.973 0.331
regr.ranger 0.948111 0.003874 244.733 < 2e-16 ***
regr.xgboost 0.062717 0.005506 11.391 < 2e-16 ***
regr.cubist 0.025705 0.004747 5.415 6.14e-08 ***
regr.nnet 1.902142 1.968248 0.966 0.334
regr.cvglmnet -0.028579 0.005799 -4.928 8.32e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.915 on 122223 degrees of freedom
Multiple R-squared: 0.6399, Adjusted R-squared: 0.6399
F-statistic: 4.344e+04 on 5 and 122223 DF, p-value: < 2.2e-16
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_silt_content_30m.png
Files
(30.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:1058383314744b12affc78cc6a6f2ca1
|
588.3 kB | Preview Download |
|
md5:94ce7f688a74ff6ecf29c3035df6c82c
|
5.6 kB | Preview Download |
|
md5:b614b8dbcdfb3661806120884bd3e340
|
9.6 GB | Preview Download |
|
md5:203bbafa922a9c9a9697fefb8fced0ee
|
9.6 GB | Preview Download |
|
md5:3074ad09eae5a4d0849ec9b44c6bb90f
|
5.9 GB | Preview Download |
|
md5:0660a47940c760a8d3ac29d69c1389ca
|
5.8 GB | Preview Download |
Additional details
Related works
- Is supplemented by
- Dataset: 10.5281/zenodo.4091153 (DOI)
- Dataset: 10.5281/zenodo.4085159 (DOI)
- Dataset: 10.5281/zenodo.4094606 (DOI)
- Dataset: 10.5281/zenodo.4094615 (DOI)
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Herrick, Jeffrey E. (2013): "The Global Land-Potential Knowledge System (LandPKS): Supporting Evidence-based, Site-specific Land Use and Management through Cloud Computing, Mobile Applications, and Crowdsourcing." Journal of Soil and Water Conservation: 5A-12A.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.