iSDAsoil: soil extractable Zinc for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Authors/Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil extractable Zinc (Zn) log-transformed predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_log.zn_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil extractable Zinc mean value,
- sol_log.zn_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil extractable Zinc model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: log.zn_mehlich3
R-square: 0.711
Fitted values sd: 0.588
RMSE: 0.375
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-2.1382 -0.2038 -0.0274 0.1632 3.6353
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.836394 1.555108 1.181 0.23766
regr.ranger 0.823144 0.013982 58.871 < 2e-16 ***
regr.xgboost 0.037861 0.013644 2.775 0.00552 **
regr.cubist 0.169653 0.010091 16.813 < 2e-16 ***
regr.nnet -1.511745 1.244933 -1.214 0.22463
regr.cvglmnet 0.009770 0.008046 1.214 0.22467
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3747 on 39344 degrees of freedom
Multiple R-squared: 0.7109, Adjusted R-squared: 0.7109
F-statistic: 1.935e+04 on 5 and 39344 DF, p-value: < 2.2e-16
To back-transform values (y) to ppm use the following formula:
ppm = expm1( y / 10 )
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_extr_zinc_30m.png
Files
(21.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:10719e26340d1596c76db3232d467fc5
|
579.0 kB | Preview Download |
|
md5:8c436e66d9e05afa75c44f9239006c73
|
5.4 kB | Preview Download |
|
md5:30999b370f30c10f453c705e1b1ac616
|
6.1 GB | Preview Download |
|
md5:9fe17d8b3be48220543672f1144ede31
|
6.5 GB | Preview Download |
|
md5:2f623365d24a066d4ca841aebe32d043
|
4.6 GB | Preview Download |
|
md5:36d89190618edf1c11555adc443f2e54
|
4.6 GB | Preview Download |
Additional details
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.
- Vågen, T. G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T., & Gumbricht, T. (2016). Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, 216-225.