iSDAsoil: soil organic carbon for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Authors/Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil organic carbon (C) log-transformed predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_log.oc_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil organic Carbon mean value,
- sol_log.oc_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil organic Carbon model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: log.oc
R-square: 0.791
Fitted values sd: 0.716
RMSE: 0.369
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-3.1517 -0.1900 -0.0060 0.1793 4.2621
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.821657 0.794000 2.294 0.0218 *
regr.ranger 1.047507 0.005146 203.571 <2e-16 ***
regr.xgboost -0.005943 0.005340 -1.113 0.2657
regr.cubist 0.052084 0.004884 10.664 <2e-16 ***
regr.nnet -0.867384 0.359213 -2.415 0.0158 *
regr.cvglmnet -0.050157 0.003863 -12.984 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3687 on 122457 degrees of freedom
Multiple R-squared: 0.7906, Adjusted R-squared: 0.7906
F-statistic: 9.248e+04 on 5 and 122457 DF, p-value: < 2.2e-16
To back-transform values (y) to g/kg use the following formula:
g/kg = expm1( y / 10 )
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_organic_c_30m.png
Files
(21.3 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:52d4138c1552f1ffc839a3c088592c77
|
636.7 kB | Preview Download |
|
md5:e6b5a94e3cf91161b934ce91a1d9bbc6
|
5.6 kB | Preview Download |
|
md5:a7f321881e8015875f51283d7e1369e7
|
6.8 GB | Preview Download |
|
md5:a523521a0183b2f76ff55e0d5f9e2d57
|
6.7 GB | Preview Download |
|
md5:66cfffc8c5beba9289071d79fb711a13
|
3.9 GB | Preview Download |
|
md5:4c617541c0fcb7b85888fd869423d4f9
|
3.9 GB | Preview Download |
Additional details
Related works
- Is supplemented by
- Dataset: 10.5281/zenodo.4088063 (DOI)
- Dataset: 10.5281/zenodo.4073236 (DOI)
- Dataset: 10.5281/zenodo.4090385 (DOI)
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.
- Vågen, T. G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T., & Gumbricht, T. (2016). Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, 216-225.