iSDAsoil: soil total Carbon for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Authors/Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil total carbon in permilles (g/kg) log-transformed predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_log.c_tot_mehlich3_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil total Carbon mean value,
- sol_log.c_tot_mehlich3_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil total Carbon model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: log.c_tot
R-square: 0.794
Fitted values sd: 0.571
RMSE: 0.291
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-2.70312 -0.16714 -0.00549 0.15691 3.01116
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.025841 0.032713 0.790 0.429570
regr.ranger 0.902240 0.008462 106.619 < 2e-16 ***
regr.xgboost 0.066535 0.008145 8.169 3.18e-16 ***
regr.cubist 0.145730 0.006927 21.039 < 2e-16 ***
regr.nnet -0.048957 0.013466 -3.636 0.000278 ***
regr.cvglmnet -0.075212 0.005556 -13.537 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.291 on 50140 degrees of freedom
Multiple R-squared: 0.7938, Adjusted R-squared: 0.7938
F-statistic: 3.861e+04 on 5 and 50140 DF, p-value: < 2.2e-16
To back-transform values (y) to g/kg use the following formula:
g/kg = expm1( y / 10 )
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_total_c_30m.png
Files
(25.0 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:2c4d406f48003bd0f90a80ad06227983
|
554.0 kB | Preview Download |
|
md5:c3f7a80cbffc1e8f8786e4b198736edc
|
5.5 kB | Preview Download |
|
md5:b28e5a5ef9875400b85478f6855639a2
|
8.1 GB | Preview Download |
|
md5:bf8af91c9492e815c92f91722d6e1cc2
|
7.8 GB | Preview Download |
|
md5:533603f3c62c8d2b264f6b52cadfd863
|
4.3 GB | Preview Download |
|
md5:38298797cc52c971392441b4e92e6452
|
4.8 GB | Preview Download |
Additional details
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.
- Vågen, T. G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T., & Gumbricht, T. (2016). Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, 216-225.