Published October 14, 2020 | Version v0.13
Dataset Open

iSDAsoil: soil fine-earth bulk density for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths

  • 1. EnvirometriX
  • 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
  • 3. MultiOne
  • 4. University of Belgrade
  • 5. Rothamsted Research
  • 6. World Agroforestry (ICRAF)

Description

iSDAsoil dataset soil fine-earth bulk density in 10×kg/m3 predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, LandPKS, and other national and regional soil datasets). Cite as:

Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y

To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.

Layer description:

  • sol_db_od_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil bulk density mean value,
  • sol_db_od_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil bulk density model (prediction) errors,

Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:

Variable: db_od 
R-square: 0.819 
Fitted values sd: 0.269 
RMSE: 0.126 

Random forest model:
Call:
stats::lm(formula = f, data = d)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.06778 -0.06450  0.00215  0.06585  0.90016 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   -0.05538    0.04860  -1.140  0.25451    
regr.ranger    0.86305    0.01577  54.733  < 2e-16 ***
regr.xgboost   0.15383    0.01651   9.315  < 2e-16 ***
regr.cubist    0.02039    0.01113   1.832  0.06695 .  
regr.nnet      0.03465    0.03710   0.934  0.35036    
regr.cvglmnet -0.03021    0.01032  -2.927  0.00343 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1263 on 13565 degrees of freedom
Multiple R-squared:  0.8194,	Adjusted R-squared:  0.8193 
F-statistic: 1.231e+04 on 5 and 13565 DF,  p-value: < 2.2e-16

To back-transform values (y) to kg/m-cubic use:

kg/m3 = y * 10

To submit an issue or request support please visit https://isda-africa.com/isdasoil

Notes

iSDA is a social enterprise with the mission to improve smallholder farmer profitability across Africa. iSDA builds on the legacy of the African Soils information service (AfSIS) project. We are grateful for the outputs generated by all former AfSIS project partners: Columbia University, Rothamsted Research, World Agroforestry (ICRAF), Quantitative Engineering Design (QED), ISRIC — World Soil Information, International Institute of Tropical Agriculture (IITA), Ethiopia Soil Information Service (EthioSIS), Ghana Soil Information Service (GhaSIS), Nigeria Soil Information Service (NiSIS) and Tanzania Soil Information Service (TanSIS). More details on AfSIS partners and data contributors can be found at https://isda-africa.com/isdasoil

Files

001_africa_soil_bulk_density_30m.png

Files (39.8 GB)

Name Size Download all
md5:8c38f2ec080658159eeaa3cc8c580786
548.6 kB Preview Download
md5:94a42e48e434f91fd4b529dcb2445af8
5.6 kB Preview Download
md5:128a8944a014bf3ff1d3e4976128dee7
14.6 GB Preview Download
md5:a27a4f0a18a53c552cd419b0e3768ca2
14.7 GB Preview Download
md5:9602457faa3e27d53b3523600dc4be50
10.5 GB Preview Download

Additional details

References

  • Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
  • Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
  • Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.