iSDAsoil: soil fine-earth bulk density for Africa predicted at 30 m resolution at 0-20 and 20-50 cm depths
Authors/Creators
- 1. EnvirometriX
- 2. Innovative Solutions for Decision Agriculture Ltd (iSDA)
- 3. MultiOne
- 4. University of Belgrade
- 5. Rothamsted Research
- 6. World Agroforestry (ICRAF)
Description
iSDAsoil dataset soil fine-earth bulk density in 10×kg/m3 predicted at 30 m resolution for 0–20 and 20–50 cm depth intervals. Data has been projected in WGS84 coordinate system and compiled as COG. Predictions have been generated using multi-scale Ensemble Machine Learning with 250 m (MODIS, PROBA-V, climatic variables and similar) and 30 m (DTM derivatives, Landsat, Sentinel-2 and similar) resolution covariates. For model training we use a pan-African compilations of soil samples and profiles (iSDA points, AfSPDB, LandPKS, and other national and regional soil datasets). Cite as:
Hengl, T., Miller, M.A.E., Križan, J. et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). https://doi.org/10.1038/s41598-021-85639-y
To open the maps in QGIS and/or directly compute with them, please use the Cloud-Optimized GeoTIFF version.
Layer description:
- sol_db_od_m_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil bulk density mean value,
- sol_db_od_md_30m_*..*cm_2001..2017_v0.13_wgs84.tif = predicted soil bulk density model (prediction) errors,
Model errors were derived using bootstrapping: md is derived as standard deviation of individual learners from 5-fold cross-validation (using spatial blocking). The model 5-fold cross-validation (mlr::makeStackedLearner) for this variable indicates:
Variable: db_od
R-square: 0.819
Fitted values sd: 0.269
RMSE: 0.126
Random forest model:
Call:
stats::lm(formula = f, data = d)
Residuals:
Min 1Q Median 3Q Max
-1.06778 -0.06450 0.00215 0.06585 0.90016
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.05538 0.04860 -1.140 0.25451
regr.ranger 0.86305 0.01577 54.733 < 2e-16 ***
regr.xgboost 0.15383 0.01651 9.315 < 2e-16 ***
regr.cubist 0.02039 0.01113 1.832 0.06695 .
regr.nnet 0.03465 0.03710 0.934 0.35036
regr.cvglmnet -0.03021 0.01032 -2.927 0.00343 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1263 on 13565 degrees of freedom
Multiple R-squared: 0.8194, Adjusted R-squared: 0.8193
F-statistic: 1.231e+04 on 5 and 13565 DF, p-value: < 2.2e-16
To back-transform values (y) to kg/m-cubic use:
kg/m3 = y * 10
To submit an issue or request support please visit https://isda-africa.com/isdasoil
Notes
Files
001_africa_soil_bulk_density_30m.png
Files
(39.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:8c38f2ec080658159eeaa3cc8c580786
|
548.6 kB | Preview Download |
|
md5:94a42e48e434f91fd4b529dcb2445af8
|
5.6 kB | Preview Download |
|
md5:128a8944a014bf3ff1d3e4976128dee7
|
14.6 GB | Preview Download |
|
md5:a27a4f0a18a53c552cd419b0e3768ca2
|
14.7 GB | Preview Download |
|
md5:9602457faa3e27d53b3523600dc4be50
|
10.5 GB | Preview Download |
Additional details
References
- Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., ... & Wheeler, I. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77-102.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.
- Leenaars, J. G. B. (2014). Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). Africa Soil Information Service (AfSIS) project (No. 2014/03). ISRIC-World Soil Information.