Published August 31, 2020 | Version v1
Journal article Open

DEVELOPMENT OF A LASER COMPLEX FOR ECOLOGICAL MONITORING OF THE ATMOSPHERE OF URBAN AND INDUSTRIAL AREAS

  • 1. V. N. Karazin Kharkiv National University
  • 2. . N. Karazin Kharkiv National University
  • 3. Bukovinian State Medical University
  • 4. Institute of Hologra-phy of Academy of Science of Applied Radioelectronics
  • 5. LLC «GREENSOL»
  • 6. Kharkiv National University of Radio Electro-nics

Description

The object of research is methods of remote ecological monitoring of the surface layer of the atmosphere within residential areas and industrial zones of big cities. For the remote determination of the quantitative cha-racteristics of gas and aerosol air pollution with high accuracy and spatial resolution, a mobile laser complex has been proposed. Determination of the composition and concentration of gas pollutants is carried out using two methods – the differential absorption method and the spontaneous Raman scattering (SRS) method. The differential absorption method is used to detect low concentrations of polluting gases along a stationary sound-ing path. The spontaneous Raman scattering method is used for remote detection of harmful gaseous substances at their concentrations exceeding the maximum permissible standards. SRS method used in the developed gas aerosol lidar allows one to obtain three-dimensional distributions of the concentrations of the gases being de-termined with a resolution of the order of one meter. This makes it possible to quickly and accurately identify environmentally hazardous sources of air pollution and reasonably apply penalties to violators of environmental standards. Remote analysis of the aerosol composition of the surface layer of the atmosphere is carried out using lidar holography methods, which were developed in the laboratory of radio and optical holography of V. N. Karazin Kharkiv National University (Ukraine). The difference in reflection from liquid and solid aerosol particles makes it possible to form polarization holograms and consider them separately for liquid and solid aerosols. Quantitative analysis of the composition and concentration of particles observed from their holographic images is characterized by a high level of sensitivity, since, unlike other known methods, it does not require a priori assumptions about the qualitative composition of the determined aerosol. Thus, due to the use of various physical principles of the interaction of laser radiation with gaseous and aerosol components of the air, the de-veloped laser complex for environmental monitoring of the atmosphere is an effective means of monitoring the state of the air in the conditions of modern megacities.

Files

DEVELOPMENT OF A LASER COMPLEX FOR ECOLOGICAL MONITORING OF THE ATMOSPHERE OF URBAN AND INDUSTRIAL AREAS.pdf

Additional details

References

  • Krekov, G. M., Matvienko, G. G. (2010). Razvitie lazernykh tekhnologii v probleme distantsionnogo zondirovaniia atmosfery. Optika atmosfery i okeana, 23 (10), 865–844.
  • Ruzankina, J., Elizarov, V., Konopel'ko, L., Zhevlakov, A., Grishkanich, A. (2018). Raman lidar with for geoecological monitoring. Journal of Physics: Conference Series, 1124, 051036. doi: http://doi.org/10.1088/1742-6596/1124/5/051036
  • Wandinger, U. (2005). Introduction to Lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, 1–18. doi: http://doi.org/10.1007/0-387-25101-4_1
  • Alimov, S. V., Kascheev, S. V., Kosachev, D. V., Petrov, S. B., Zheviakov, A. P. (2007). Multifunctional lidar for needs of oil-and-gas pipes. Proc. of SPIE, 6610. doi: http://doi.org/10.1117/12.739830
  • Ismail, S., Browell, E. V. (2015). Differential absorption lidar. Encyclopedia of Atmospheric Sciences, 277–288. doi: http://doi.org/10.1016/b978-0-12-382225-3.00204-8
  • Amediek, A., Ehret, G., Fix, A., Wirth, M., Büdenbender, C., Quatrevalet, M. et. al. (2017). CHARM-F – a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions. Applied Optics, 56 (18), 5182–5197. doi: http://doi.org/10.1364/ao.56.005182
  • Wagner, G. A., Plusquellic, D. F. (2016). Ground-based, integrated path differential absorption LIDAR measurement of CO_2, CH_4, and H_2O near 16 μm. Applied Optics, 55 (23), 6292–6310. doi: http://doi.org/10.1364/ao.55.006292
  • Wagner, G. A., Plusquellic, D. F. (2018). Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 16 µm. Optics Express, 26 (15), 19420–19434. doi: http://doi.org/10.1364/oe.26.019420
  • Shiina, T. (2018). Hydrogen gas detection by mini-Raman lidar. Ionizing Radiation Effects and Applications. Books on Demand, 41–60.
  • Kim, D., Lee, H. (2019). Development of Raman Lidar for Remote Sensing of CO2 Leakage at an Artificial Carbon storage experimental site. Geophysical Research Abstracts, 21.
  • Kim, D., Kang, H., Ryu, J.-Y., Jun, S.-C., Yun, S.-T., Choi, S. et. al. (2018). Development of Raman Lidar for Remote Sensing of CO2 Leakage at an Artificial Carbon Capture and Storage Site. Remote Sensing, 10 (9), 1439. doi: http://doi.org/10.3390/rs10091439
  • Astmann, A., Müller, D. (2005). Lidar and atmospheric aerosol particles. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, 105–142. doi: http://doi.org/10.1007/0-387-25101-4_4
  • Matvienko, G. G., Banakh, V. A., Bobrovnikov, S. M., Burlakov, V. D., Veretennikov, V. V., Kaul, B. V. et. al. (2009). Razvitie tekhnologii lazernogo zondirovaniia atmosfery. Optika atmosfery i okeana, 22 (10), 915–930.
  • Volkov, N. N. (2012). Vybor parametrov mnogovolnovogo aerozolnogo lidara dlia distantsionnogo zondirovaniia atmosfery. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informatsionnykh tekhnologii, mekhaniki i optiki, 1 (77), 6–9.
  • Gimmestad, G. G. (2005). Differential-absorption lidar for ozone and industrial emissions. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, 187–212. doi: http://doi.org/10.1007/0-387-25101-4_7
  • Wandinger, U. (2005). Raman lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, 241–271. doi: http://doi.org/10.1007/0-387-25101-4_9
  • Nishita, T., Sirai, T., Tadamura, K., Nakamae, E. (1993). Display of the earth taking into account atmospheric scattering. Proceedings of the 20th Annual Conference on Computer graphics and interactive techniques (SIGGRAPH '93). Anaheim, 175–182. doi: http://doi.org/10.1145/166117.166140
  • Deirmendjian, D. (1969). Electromagnetic scattering on spherical polydispersions. American Elsevier Pub. Co, 290.
  • Safronov, G. S., Titar, V. P. (1994). Opticheskii lokator. Patent No. 944437 RF.
  • Titar, V. P., Shpachenko, O. V. (2001). Poliarizatsionnye golograficheskie metody lidarnogo kontrolia za sostoianiem atmosfery. Elektromagnitnye iavleniia, 2 (1 (5)), 111–117.
  • Tytar, V. P., Shpachenko, O. V. (2001). Holohrafycheskyi lydar dlia ekolohycheskoho monytorynha atmosferi. Visnyk khakrivskoho natsionalnoho universytetu im. V. N. Karazina. No. 513. Radiofizyka ta elektronika, 1, 151–160.
  • Safronov, G. S., Titar, V. P. (1994). Opticheskii lokator. Patent No. 743401 RF.
  • Sogokon, A. B., Titar, V. P. (1983). Golograficheskoe ustroistvo. A. C. No. 1149206 SSSR.
  • Safronov, G. S., Sogokon, A. B., Titar, V. P. (1980). Sposob golograficheskoi identifikatsii materialov udalennykh obektov. A. S. No. 678969 SSSR.
  • Hamamatsu Image Sensors. Selection guide (2019). Available at: https://www.hamamatsu.com/resources/pdf/ssd/image_sensor_kmpd0002e.pdf
  • Razenkov, I. A. (2013). Aerozolnii lidar dlia nepreryvnykh atmosfernykh nabliudenii. Optika atmosfery i okeana, 26 (1), 52–63.
  • Hranychno dopustymi kontsentratsii (HDK) khimichnykh chynnykiv u povitri robochoi zony, zatverdzheni HDSL vid 17.07.2015. Available at: http://normativ.ua/sanpin/tdoc27838.php
  • Measures, R. M. (1992). Laser remote sensing: fundamentals and applications. Malabar: Krieger Publishing Co., 510.
  • Sorokhtin, O. G., Ushakov, S. A. (2002). Razvitie Zemli. Moscow: Izd-vo MGU, 506.
  • Тuz, Iu. M. (1976). Strukturnye metody povysheniia tochnosti izmeritelnykh ustroistv. Kyiv: Vischa shkola. Golovnoe izd-vo, 127.
  • DSTU 2682-94 Metrolohichne zabezpechennia (1994). Osnovni polozhennia. Vvedenyi 26.07.94. Kyiv: Derzh standart Ukrainy, 439.
  • Olson, G., Piani, D. (2001). Tsifrovye sistemy avtomatizatsii i upravleniia. Saint Petersburg: Nevskii dialekt, 557.
  • Ruzhentsev, Y. V., Lutskyi, S. V., Fetkyv, V. P., Podzyhun, O. I. (2017). Discrete probabilistic information laws factor of efficiency. Ukrainskyi metrolohichnyi zhurnal, 1, 67–71.