Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published September 4, 2020 | Version v1
Journal article Open

METHOD FOR DETERMINING THE RESPONSES FROM A NON-LINEAR SYSTEM USING THE VOLTERRA SERIES

  • 1. University of AL-Hamdaniya
  • 2. Kharkiv National University of Radio Electronics

Description

A methodology has been proposed for estimating the nonlinear effects in radio tracts of receiving and transmitting devices in radio-electronic means of mobile communication systems, based on using the nonlinear transfer functions of the higher-order Volterra series.

A procedure has been devised for obtaining the output responses from a nonlinear non-inertia circuit under the harmonious input action using a method for determining the transfer functions of higher orders obtained on the basis of the transfer functions of lower orders.

We have derived the analytical expressions for the output responses from a nonlinear system of different orders for three inputs for the case of representing a nonlinear system in the form of a nonlinear non-inertia circuit.

The values of the transfer functions of higher orders for a nonlinear non-inertia circuit were determined by using a state variable method.

This paper demonstrates the derivation of analytical expressions to calculate a harmonic coefficient based on the second and third harmonics using the nonlinear higher-orders transfer functions of a nonlinear non-inertia circuit.

It has been shown that the use of the nonlinear transfer functions to the fifth order inclusive allows a more accurate assessment of nonlinear effects in the form of the harmonious and intermodulation distortions in the radio tracts of radio-electronic means of mobile systems.

The outlined technique for determining the nonlinear transfer functions is invariant to the topology of a nonlinear electrical circuit, as well as to the quantity and type of nonlinear elements. Existing estimation procedures of electromagnetic compatibility related to the problems of calculating intermodulation interference can be improved by the introduction of the determined magnitudes of influence products.

The proposed methodology makes it possible to evaluate the set of nonlinear effects in the problems related to electromagnetic compatibility in the groups of radio-electronic means with the accuracy required by users

Files

Method for determining the responses from a non-linear system using the Volterra series.pdf

Additional details

References

  • Zaker, N. A., Alsaleem, N., Kashmoola, M. A. (2018). Multi-agent Models Solution to Achieve EMC In Wireless Telecommunication Systems. 2018 1st Annual International Conference on Information and Sciences (AiCIS). doi: https://doi.org/10.1109/aicis.2018.00061
  • Alsaleem, N. Y. A., Moskalets, M., Teplytska, S. (2016). The analysis of methods for determining direction of arrival of signals in problems of space-time access. Eastern-European Journal of Enterprise Technologies, 4 (9 (82)), 36–44. doi: https://doi.org/10.15587/1729-4061.2016.75716
  • Alsaleem, N. Y. A., Kashmoola, M. A., Moskalets, M. (2018). Analysis of the efficiency of space­time access in the mobile communication systems based on an antenna array. Eastern-European Journal of Enterprise Technologies, 6 (9 (96)), 38–47. doi: https://doi.org/10.15587/1729-4061.2018.150921
  • Kashmoola, M. A., Alsaleem, M. Y. anad, Alsaleem, N. Y. A., Moskalets, M. (2019). Model of dynamics of the grouping states of radio electronic means in the problems of ensuring electromagnetic compatibility. Eastern-European Journal of Enterprise Technologies, 6 (9 (102)), 12–20. doi: https://doi.org/10.15587/1729-4061.2019.188976
  • Kolyadenko, Yu. Yu., Chursanov, N. A., Bondarenko, O. S. (2019). Model of electromagnetic interactions in LTE network. Radiotekhnika, 196, 46–50. doi: https://doi.org/10.30837/rt.2019.1.196.05
  • Bobreshov, A. M., Mymrikova, N. N. (2013). Problemy analiza sil'no nelineynyh rezhimov elektronnyh ustroystv na osnove ryadov Vol'terry. Voronezhskiy gosudarstvennyy universitet. Vestnik VGU. Seriya: fizika. Matematika, 2, 15–25.
  • Bussgang, D., Erman, L., Greyam, D. (1974). Analiz nelineynyh sistem pri vozdeystvii neskol'kih vhodnyh signalov. TIIER, 62 (8), 56–82.
  • Bedrosyan, E., Rays, S. O. (1971). Svoystva vyhodnogo signala sistem, opisyvaemyh ryadami Vol'terra (nelineynyh sistem s pamyat'yu), pri podache na vhod garmonicheskih kolebaniy i gaussova shuma. TIIER, 59 (12), 58–82.
  • Chong, E. The Volterra series and the direct method of distortion analysis. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.7283&rep=rep1&type=pdf
  • Kolding, T. E., Larsen, T. (1997). High-order volterra series analysis using parallel computing. International Journal of Circuit Theory and Applications, 25 (2), 107–114. doi: https://doi.org/10.1002/(sici)1097-007x(199703/04)25:2<107::aid-cta956>3.0.co;2-y
  • Heiskanen, A., Rahkonen, T. (2002). 5th order multi-tone Volterra simulator with component-level output. 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353). doi: https://doi.org/10.1109/iscas.2002.1010293
  • Schreurs, D., ODroma, M., Goacher, A. A., Gadringer, M. (Eds.) (2008). RF Power Amplifier Behavioral Modeling. Cambrige University Press. doi: https://doi.org/10.1017/cbo9780511619960
  • Dobes, J. (2008). Using Volterra Series for an Estimation of Fundamental Intermodulation Products. Radioengineering, 17 (4), 59–64.
  • Anilionienė, J. (2011). The Volterra series of distortion analysis. Lietuvos Matematikos Rinkinys, 52. doi: https://doi.org/10.15388/lmr.2011.mt01
  • Cooman, A., Bronders, P., Peumans, D., Vandersteen, G., Rolain, Y. (2018). Distortion Contribution Analysis With the Best Linear Approximation. IEEE Transactions on Circuits and Systems I: Regular Papers, 65 (12), 4133–4146. doi: https://doi.org/10.1109/tcsi.2018.2834139
  • Yu, H., El-Sankary, K., El-Masry, E. I. (2015). Distortion Analysis Using Volterra Series and Linearization Technique of Nano-Scale Bulk-Driven CMOS RF Amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 62 (1), 19–28. doi: https://doi.org/10.1109/tcsi.2014.2341116
  • Gourary, M. M., Rusakov, S. G., Ulyanov, S. L., Zharov, M. M., Mulvaney, B. J. (2011). Circuit Distortion Analysis Based on the Simplified Newton's Method. Journal of Electrical and Computer Engineering, 2011, 1–11. doi: https://doi.org/10.1155/2011/540305
  • Wei, W., Ye, P., Song, J., Zeng, H., Gao, J., Zhao, Y. (2019). A Behavioral Dynamic Nonlinear Model for Time-Interleaved ADC Based on Volterra Series. IEEE Access, 7, 41860–41873. doi: https://doi.org/10.1109/access.2019.2905365
  • Maas, S. A. (2003). Nonlinear Microwave and RF Circuits. Artech House, 608.
  • Schetzen, M. (2006). The Volterra and Wiener Theories of Nonlinear Systems. Krieger Pub Co, 595.
  • Doroshenko, T. V., Selivanov, K. A. (2006). Opredelenie parametrov vihіdnogo signala priemnika signalov s pomoshch'yu ryadov Vol'terra. Radiotekhnika, 144, 182–186.
  • Moskalets, N. V., Selivanov, K. A., Nikitenko, T. V. (2011). Analiz nelineynyh iskazheniy v radiotrakte s primeneniem razlichnyh metodov otsenki nelineynosti. Problemy telekommunikatsiy, 2 (4), 150–161. Available at: https://openarchive.nure.ua/bitstream/document/469/1/112_selivanov_radio.pdf
  • Bogdanovich, B. M. (1980). Nelineynye iskazheniya v priemno-usilitel'nyh ustroystvah. Moscow: Svyaz', 280.
  • Baskakov, S. I. (1988). Radiotehnicheskie tsepi i signaly. Moscow: Vysshaya shkola, 446.