ultralytics/yolov5: v3.0
Creators
- Glenn Jocher1
- Alex Stoken2
- Jirka Borovec3
- NanoCode012
- ChristopherSTAN
- Liu Changyu4
- Laughing
- Adam Hogan
- lorenzomammana5
- tkianai6
- yxNONG
- AlexWang1900
- Laurentiu Diaconu7
- Marc
- wanghaoyang0106
- ml5ah
- Doug
- Hatovix
- Jake Poznanski
- Lijun Yu 于力军8
- changyu98
- Prashant Rai
- Russ Ferriday9
- Trevor Sullivan
- Wang Xinyu
- YuriRibeiro
- Eduard Reñé Claramunt10
- hopesala11
- pritul dave
- yzchen12
- 1. @ultralytics
- 2. Jacobs JETS @ NASA Johnson Space Center
- 3. CTU in Prague
- 4. alibaba
- 5. University of Milan-Bicocca
- 6. 玻璃杯哲学
- 7. innAIte technologies
- 8. Carnegie Mellon University
- 9. Topia Systems Ltd
- 10. Digitalist @digitalist-se
- 11. HIT
- 12. Shanghai Jiao Tong University
Description
Breaking Changes
This release does not contain breaking changes.
Bug Fixes- Hyperparameter evolution fixed, tutorial added (https://github.com/ultralytics/yolov5/issues/607)
- PyTorch 1.6 native AMP replaces NVIDIA Apex AMP (https://github.com/ultralytics/yolov5/pull/573)
nn.Hardswish()
activations replacenn.LeakyReLU(0.1)
in base convolution modulemodels.Conv()
- Dataset Autodownload feature added (https://github.com/ultralytics/yolov5/pull/685)
- Model Autodownload improved (https://github.com/ultralytics/yolov5/pull/711)
- Layer freezing code added (https://github.com/ultralytics/yolov5/issues/679)
- TensorRT export tutorial added (https://github.com/ultralytics/yolov5/pull/623)
<img src="https://user-images.githubusercontent.com/26833433/85340570-30360a80-b49b-11ea-87cf-bdf33d53ae15.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- August 13, 2020: v3.0 release: nn.Hardswish() activations, data autodownload, native AMP.
- July 23, 2020: v2.0 release: improved model definition, training and mAP.
- June 22, 2020: PANet updates: new heads, reduced parameters, improved speed and mAP 364fcfd.
- June 19, 2020: FP16 as new default for smaller checkpoints and faster inference d4c6674.
- June 9, 2020: CSP updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- May 27, 2020: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
- April 1, 2020: Start development of future compound-scaled YOLOv3/YOLOv4-based PyTorch models.
AP<sup>test</sup> denotes COCO test-dev2017 server results, all other AP results in the table denote val2017 accuracy. All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by python test.py --data coco.yaml --img 640 --conf 0.001
Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP n1-standard-16 instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by python test.py --data coco.yaml --img 640 --conf 0.1
All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
Test Time Augmentation (TTA) runs at 3 image sizes. Reproduce** by python test.py --data coco.yaml --img 832 --augment
AP<sup>test</sup> denotes COCO test-dev2017 server results, all other AP results in the table denote val2017 accuracy. All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by python test.py --data coco.yaml --img 672 --conf 0.001
Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP n1-standard-16 instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by python test.py --data coco.yaml --img 640 --conf 0.1
All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
Files
ultralytics/yolov5-v3.0.zip
Files
(3.2 MB)
Name | Size | Download all |
---|---|---|
md5:b9642955cd042d797d54b9a0db1de386
|
3.2 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/ultralytics/yolov5/tree/v3.0 (URL)