Published January 19, 2022 | Version 1.0
Software Open

deep_texture: Deep Texture Representations for Cancer Histology Images

Authors/Creators

  • 1. The University of Tokyo

Description

Notice: We have modified the code to create a deep texture library that can be installed with pip.
See below for details.

pip: https://pypi.org/project/deeptexture/

document: https://deep-texture-histology.readthedocs.io/en/latest/index.html

github: https://github.com/dakomura/deep_texture_histology

 

The old version below is no longer supported.

LICENSE

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA 4.0)

For non-commercial use, please use the code under CC-BY-NC-SA.
If you would like to use the code for commercial purposes, please contact us (ishum-prm@m.u-tokyo.ac.jp).

Code Description

# Installation

conda create -n deep_texture python=3.6
source activate deep_texture

conda install -c anaconda cudatoolkit==9.0
conda install -c anaconda cudnn==7.6.5

pip install pillow
pip install tensorflow-gpu==1.10.0
pip install keras==2.2.3

pip install git+https://github.com/keras-team/keras-applications.git@d506dc82d0


## usage
import deep_texture

(prep, dnn) = deep_texture.setup_texture(arch = 'nasnet', layer = 'normal_concat_11', cbp_dir = '/tmp')

dtr = deep_texture.calc_features_file("./test.png", prep, dnn)

 

Citation

If you use this code for your research, please cite our paper.

Komura, D., Kawabe, A., Fukuta, K., Sano, K., Umezaki, T., Koda, H., Suzuki, R., Tominaga, K., Ochi, M., Konishi, H., Masakado, F., Saito, N., Sato, Y., Onoyama, T., Nishida, S., Furuya, G., Katoh, H., Yamashita, H., Kakimi, K., Seto, Y., Ushiku, T., Fukayama, M., Ishikawa, S., 2022. Universal encoding of pan-cancer histology by deep texture representations. Cell Reports 38, 110424. https://doi.org/10.1016/j.celrep.2022.110424

Files

README.md

Files (187.2 kB)

Name Size Download all
md5:d663584171596b9e60e442ea8943389b
7.4 kB Download
md5:18e04954e9f42add0662be24c1268cab
308 Bytes Download
md5:2b99a1b48e8282c1825baa949e52be74
571 Bytes Preview Download
md5:1df751b234814a486ec05f5d238bb2bd
178.9 kB Preview Download