Published October 8, 2016 | Version 1.0
Dataset Open

ITOP Dataset

Description

Summary

The ITOP dataset (Invariant Top View) contains 100K depth images from side and top views of a person in a scene. For each image, the location of 15 human body parts are labeled with 3-dimensional (x,y,z) coordinates, relative to the sensor's position. Read the full paper for more context [pdf].

Getting Started

Download then decompress the h5.gz file.

gunzip ITOP_side_test_depth_map.h5.gz

Using Python and h5py (pip install h5py or conda install h5py), we can load the contents:

import h5py
import numpy as np

f = h5py.File('ITOP_side_test_depth_map.h5', 'r')
data, ids = f.get('data'), f.get('id')
data, ids = np.asarray(data), np.asarray(ids)

print(data.shape, ids.shape)
# (10501, 240, 320) (10501,)

Note: For any of the *_images.h5.gz files, the underlying file is a tar file and not a h5 file. Please rename the file extension from h5.gz to tar.gz before opening. The following commands will work:

mv ITOP_side_test_images.h5.gz ITOP_side_test_images.tar.gz
tar xf ITOP_side_test_images.tar.gz

Metadata

File sizes for images, depth maps, point clouds, and labels refer to the uncompressed size.

+-------+--------+---------+---------+----------+------------+--------------+---------+
| View  | Split  | Frames  | People  | Images   | Depth Map  | Point Cloud  | Labels  |
+-------+--------+---------+---------+----------+------------+--------------+---------+
| Side  | Train  | 39,795  |     16  | 1.1 GiB  | 5.7 GiB    | 18 GiB       | 2.9 GiB |
| Side  | Test   | 10,501  |      4  | 276 MiB  | 1.6 GiB    | 4.6 GiB      | 771 MiB |
| Top   | Train  | 39,795  |     16  | 974 MiB  | 5.7 GiB    | 18 GiB       | 2.9 GiB |
| Top   | Test   | 10,501  |      4  | 261 MiB  | 1.6 GiB    | 4.6 GiB      | 771 MiB |
+-------+--------+---------+---------+----------+------------+--------------+---------+

Data Schema

Each file contains several HDF5 datasets at the root level. Dimensions, attributes, and data types are listed below. The key refers to the (HDF5) dataset name. Let \(n\) denote the number of images.

Transformation

To convert from point clouds to a \(240 \times 320\) image, the following transformations were used. Let \(x_{\textrm{img}}\) and \(y_{\textrm{img}}\) denote the \((x,y)\) coordinate in the image plane. Using the raw point cloud \((x,y,z)\) real world coordinates, we compute the depth map as follows: \(x_{\textrm{img}} = \frac{x}{Cz} + 160\) and \(y_{\textrm{img}} = -\frac{y}{Cz} + 120\) where \(C\approx 3.50×10^{−3} = 0.0035\) is the intrinsic camera calibration parameter. This results in the depth map: \((x_{\textrm{img}}, y_{\textrm{img}}, z)\).

Joint ID (Index) Mapping

joint_id_to_name = {
  0: 'Head',        8: 'Torso',
  1: 'Neck',        9: 'R Hip',
  2: 'R Shoulder',  10: 'L Hip',
  3: 'L Shoulder',  11: 'R Knee',
  4: 'R Elbow',     12: 'L Knee',
  5: 'L Elbow',     13: 'R Foot',
  6: 'R Hand',      14: 'L Foot',
  7: 'L Hand',
}

Depth Maps

  • Key: id
    • Dimensions: \((n,)\)
    • Data Type: uint8
    • Description: Frame identifier in the form XX_YYYYY where XX is the person's ID number and YYYYY is the frame number.
  • Key: data
    • Dimensions: \((n,240,320)\)
    • Data Type: float16
    • Description: Depth map (i.e. mesh) corresponding to a single frame. Depth values are in real world meters (m).

Point Clouds

  • Key: id
    • Dimensions: \((n,)\)
    • Data Type: uint8
    • Description: Frame identifier in the form XX_YYYYY where XX is the person's ID number and YYYYY is the frame number.
  • Key: data
    • Dimensions: \((n,76800,3)\)
    • Data Type: float16
    • Description: Point cloud containing 76,800 points (240x320). Each point is represented by a 3D tuple measured in real world meters (m).

Labels

  • Key: id
    • Dimensions: \((n,)\)
    • Data Type: uint8
    • Description: Frame identifier in the form XX_YYYYY where XX is the person's ID number and YYYYY is the frame number.
  • Key: is_valid
    • Dimensions: \((n,)\)
    • Data Type: uint8
    • Description: Flag corresponding to the result of the human labeling effort. This is a boolean value (represented by an integer) where a one (1) denotes clean, human-approved data. A zero (0) denotes noisy human body part labels. If is_valid is equal to zero, you should not use any of the provided human joint locations for the particular frame.
  • Key: visible_joints
    • Dimensions: \((n,15)\)
    • Data Type: int16
    • Description: Binary mask indicating if each human joint is visible or occluded. This is denoted by \(\alpha\) in the paper. If \(\alpha_j=1\) then the \(j^{th}\) joint is visible (i.e. not occluded). Otherwise, if \(\alpha_j = 0\) then the \(j^{th}\) joint is occluded.
  • Key: image_coordinates
    • Dimensions: \((n,15,2)\)
    • Data Type: int16
    • Description: Two-dimensional \((x,y)\) points corresponding to the location of each joint in the depth image or depth map.
  • Key: real_world_coordinates
    • Dimensions: \((n,15,3)\)
    • Data Type: float16
    • Description: Three-dimensional \((x,y,z)\) points corresponding to the location of each joint in real world meters (m).
  • Key: segmentation
    • Dimensions: \((n,240,320)\)
    • Data Type: int8
    • Description: Pixel-wise assignment of body part labels. The background class (i.e. no body part) is denoted by −1.

Citation

If you would like to cite our work, please use the following.

Haque A, Peng B, Luo Z, Alahi A, Yeung S, Fei-Fei L. (2016). Towards Viewpoint Invariant 3D Human Pose Estimation. European Conference on Computer Vision. Amsterdam, Netherlands. Springer.

@inproceedings{haque2016viewpoint,
    title={Towards Viewpoint Invariant 3D Human Pose Estimation},
    author={Haque, Albert and Peng, Boya and Luo, Zelun and Alahi, Alexandre and Yeung, Serena and Fei-Fei, Li},
    booktitle = {European Conference on Computer Vision},
    month = {October},
    year = {2016}
}

Files

sample_front.jpg

Files (24.4 GB)

Name Size Download all
md5:65f431c9f7540db6118d99bc9bae7576
245.1 MB Download
md5:1803c50e44746dca7ccf03c2d46c466e
258.0 MB Download
md5:7205b0ba47f76892742ded774754d7a1
3.7 MB Download
md5:3f5227d6f260011b19f325fffde08a65
2.1 GB Download
md5:80736f716b0e83f7cc73ec85bb13effc
926.2 MB Download
md5:e325ed23ed962f86594b70f17c048a30
1.0 GB Download
md5:e62a67678d5cddc13e07cfdd1eb0a176
16.8 MB Download
md5:6ca457e8471e7514222624e937e11a9c
7.8 GB Download
md5:d8ad31ecbbcd13ee5e1f02874c0cb3d0
245.5 MB Download
md5:21f702e3ce0e5602340957e6cae6148a
246.7 MB Download
md5:6a9c5d7845dc7fdf6d168ee4dd356afd
9.3 MB Download
md5:3ac977488864e27ac13e8cf17d03f8c7
2.0 GB Download
md5:159a8694f653f5b639252de84469f7b9
917.9 MB Download
md5:6e2daf5be0f0bf6eddf611913e718417
923.9 MB Download
md5:95776e7beeb9a769bef25eb336afb5bd
32.2 MB Download
md5:f5fd64240296be0bfff5318beca19884
7.6 GB Download
md5:86d7be54b61841fe22b27949fffc042d
20.4 kB Preview Download
md5:25aaef40a70ad75f452438824a2bb71f
22.9 kB Preview Download
md5:0afbd5971faee803d14969e4c2a71267
18.7 kB Preview Download
md5:5d6c045333e9f520c24d335f57e0422e
17.5 kB Preview Download

Additional details

Related works

Cites
Preprint: arXiv:1603.07076 (arXiv)