SIRAH-CoV2 initiative: Glycosylated RBD
Creators
- 1. Institut Pasteur de Montevideo
Description
This dataset contains the trajectories of 10 microseconds-long coarse-grained molecular dynamics simulations of SARS-CoV2 Spike´s RBD glycosylated at Asn331 and Asn343. The initial coordinates correspond to amino acids 327 to 532 taken from the PDB structure 6VSB. Missing loops and glycosylation trees were added with CHARMM-GUI (http://www.charmm-gui.org).
There are two different sets of simulations corresponding to Core Complex and High Mannose. Simulations were performed using the SIRAH force field running with the Amber18 package at the Uruguayan National Center for Supercomputing (ClusterUY) under the conditions reported in Machado et al. JCTC 2019, adding 150 mM NaCl according to Machado & Pantano JCTC 2020. Glycan parameters are available upon request.
The files RBD-Man9_SIRAHcg_rawdata_0-6us.tar and RBD-Man9_SIRAHcg_rawdata_6-10us.tar, contain all the raw information required to visualize (on VMD), analyze, and backmap the simulations of High Mannose glycosylated RBD. Analogous information for Core-complex glycosylations is contained in files RBD-Core-complex_SIRAHcg_rawdata_0-6us.tar and RBD-Core-complex_SIRAHcg_rawdata_6-10us.tar
Step-By-Step tutorials for running, visualizing, and analyzing CG trajectories using SirahTools can be found at www.sirahff.com.
Additionally, files with names ending in SIRAHcg_10us_glycoprot.tar contain only the protein coordinates, while file names ending with SIRAHcg_10us_glycoprot_skip10ns.tar contains one frame every 10ns.
To take a quick look at a trajectory:
1- Untar the file RBD-Core-complex_SIRAHcg_10us_prot_skip10ns.tar
2- Open the trajectory on VMD 1.9.3 using the command line:
vmd glyco-RBD_SIRAHcg_glycoprot.prmtop glyco-RBD_SIRAHcg_glycoprot.ncrst glyco-RBD_SIRAHcg_glycoprot_10us_skip10ns.nc -e sirah_vmdtk.tcl
Note that you can use normal VMD drawing methods as vdw, licorice, etc., and coloring by restype, element, name, etc.
This dataset is part of the SIRAH-CoV2 initiative.
For further details, please contact Pablo Garay (pgaray@pasteur.edu.uy) or Sergio Pantano (spantano@pasteur.edu.uy).
Files
Files
(17.8 GB)
Name | Size | Download all |
---|---|---|
md5:ad2b5fdb33bd9c64fa45bdba84277400
|
680.6 MB | Download |
md5:da5c9413aed15be21e497776a8656cfb
|
14.2 MB | Download |
md5:e6afef26a068529d5ad35943100ddeaa
|
5.3 GB | Download |
md5:1895649b9e7a7d36bf14dbad450a355f
|
3.5 GB | Download |
md5:95a4f703effde3cbcad047e66dd4c6f6
|
701.0 MB | Download |
md5:cf5fb9ca22f49359bd1b80d9df4b73b1
|
14.6 MB | Download |
md5:b3a71e240e5bd20550efe684c856072e
|
4.6 GB | Download |
md5:6fe59151e752d25d0b6825a7bce0f8a3
|
3.0 GB | Download |
Additional details
References
- Machado et al. JCTC 2019 (DOI: 10.1021/acs.jctc.9b00006)
- Machado & Pantano JCTC 2020 (DOI:10.1021/acs.jctc.9b00953)
- Machado & Pantano Bioinformatics 2016 (DOI:10.1093/bioinformatics/btw020)