Published June 2, 2020
| Version v1
Software
Open
mpariente/DPRNNTasNet_WHAM!_sepclean
Description
Description:
This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.
Training config:
- data:
- mode: min
- nondefault_nsrc: None
- sample_rate: 8000
- segment: 2.0
- task: sep_clean
- train_dir: data/wav8k/min/tr
- valid_dir: data/wav8k/min/cv
- filterbank:
- kernel_size: 2
- n_filters: 64
- stride: 1
- main_args:
- exp_dir: exp/train_dprnn_new/
- gpus: -1
- help: None
- masknet:
- bidirectional: True
- bn_chan: 128
- chunk_size: 250
- dropout: 0
- hid_size: 128
- hop_size: 125
- in_chan: 64
- mask_act: sigmoid
- n_repeats: 6
- n_src: 2
- out_chan: 64
- optim:
- lr: 0.001
- optimizer: adam
- weight_decay: 1e-05
- positional arguments:
- training:
- batch_size: 3
- early_stop: True
- epochs: 200
- gradient_clipping: 5
- half_lr: True
- num_workers: 8
Results:
- si_sdr: 19.316743490695334
- si_sdr_imp: 19.317895273889842
- sdr: 19.68085347190952
- sdr_imp: 19.5298092932871
- sir: 30.362213998701232
- sir_imp: 30.21116982007881
- sar: 20.15553251343315
- sar_imp: -129.02091762351188
- stoi: 0.97772664309074
- stoi_imp: 0.23968091518217424
License notice:
This work "DPRNNTasNet_WHAM!_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "DPRNNTasNet_WHAM!_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.
Files
Files
(14.6 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:13e9a1c714b15d6bf70780f79004f7bb
|
14.6 MB | Download |