Published June 2, 2020 | Version v1
Software Open

mpariente/DPRNNTasNet_WHAM!_sepclean

Authors/Creators

  • 1. Universite Lorraine, CNRS, Inria, LORIA, France

Description

Description:

This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.

 

Training config:

  • data:
    • mode: min
    • nondefault_nsrc: None
    • sample_rate: 8000
    • segment: 2.0
    • task: sep_clean
    • train_dir: data/wav8k/min/tr
    • valid_dir: data/wav8k/min/cv
  • filterbank:
    • kernel_size: 2
    • n_filters: 64
    • stride: 1
  • main_args:
    • exp_dir: exp/train_dprnn_new/
    • gpus: -1
    • help: None
  • masknet:
    • bidirectional: True
    • bn_chan: 128
    • chunk_size: 250
    • dropout: 0
    • hid_size: 128
    • hop_size: 125
    • in_chan: 64
    • mask_act: sigmoid
    • n_repeats: 6
    • n_src: 2
    • out_chan: 64
  • optim:
    • lr: 0.001
    • optimizer: adam
    • weight_decay: 1e-05
  • positional arguments:
  • training:
    • batch_size: 3
    • early_stop: True
    • epochs: 200
    • gradient_clipping: 5
    • half_lr: True
    • num_workers: 8

 

Results:

  • si_sdr: 19.316743490695334
  • si_sdr_imp: 19.317895273889842
  • sdr: 19.68085347190952
  • sdr_imp: 19.5298092932871
  • sir: 30.362213998701232
  • sir_imp: 30.21116982007881
  • sar: 20.15553251343315
  • sar_imp: -129.02091762351188
  • stoi: 0.97772664309074
  • stoi_imp: 0.23968091518217424

 

License notice:

This work "DPRNNTasNet_WHAM!_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "DPRNNTasNet_WHAM!_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.

Files

Files (14.6 MB)

Name Size Download all
md5:13e9a1c714b15d6bf70780f79004f7bb
14.6 MB Download