Published May 19, 2020 | Version v1
Dataset Open

The transcription regulatory code of a plant leaf

  • 1. College of Agronomy, Shandong Agricultural University, China; State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of 8 Hong Kong, Hong Kong, China
  • 2. Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
  • 3. School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
  • 4. State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
  • 5. College of Agronomy, Shandong Agricultural University, China
  • 6. College of Agronomy, Shandong Agricultural University, China.
  • 7. Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA; School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA; Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
  • 8. 7 State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China

Description

The transcription regulatory network underlying essential and complex functionalities inside a eukaryotic cell is defined by the combinatorial actions of transcription factors (TFs). However, TF binding studies in plants are too few in number to produce a general and comparative picture of this complex regulatory network. Here, we used ChIP-seq to determine the binding profiles of 104 TF expressed in the maize leaf (Data can be downloaded from NCBI SRA under accession number PRJNA518749) 

With this large dataset, we trained machine-learning models to identify TF sequence preferences. A contrast between Maize and Arabidopsis TF sequence preferences revealed that DNA binding follows the conservation of TF protein families. Finally, the trained models were used to predict and compare the regulatory networks in other grasses species (Sorghum and Rice), which revealed that the edges between TF and TF coding genes are more likely to be maintained (i.e., evolutionarily conserved). 

On a practical level, we expect the presented TF binding models to be integrated into pipelines to predict effects of non-coding variants, both common and rare, on TF binding, to pinpoint causal sites. As the possibility of being able to predict and generate novel variation not seen in nature could fundamentally change future plant breeding.

Detail: Each *tar.gz file is a bag-of-k-mer model fitted for a single ZmTF, which can be used for predictions. Information about each ZmTF is included in the table tfids.tsv

For more information about the project: 
The transcription regulatory code of a plant leaf

Notes

This work was funded by USDA-ARS, NSF PGRP #1238014, National Science Foundation of China 31871313, National Key Research and Development Program of China 2016YFD0101003, Taishan Pandeng program as well as Hong Kong UGC GRF 14108117, Area of Excellence Scheme (AoE/M-403/16).

Files

Files (18.1 MB)

Name Size Download all
md5:c5b0bd6ada7fdf8ee36c99e4c102ffd7
6.6 kB Download
md5:1d5f674da2ffca8945697810de8699b0
172.5 kB Download
md5:22c84d4bc2089eb0ed640f6c193ed2e5
173.0 kB Download
md5:3df93b44164ee57babbf40eb1245a479
174.3 kB Download
md5:f3a499199545299e3a84004edb22281f
176.7 kB Download
md5:173a61e183dc9d5806945271b136799f
178.8 kB Download
md5:e2fb0a1980ee47d91140dda72fd955a7
174.4 kB Download
md5:7fb80f20ba8907b5743dc1ee246d8b44
176.8 kB Download
md5:ef4e10ab9f73531099065ea6ca74ff6f
174.3 kB Download
md5:20b3562b1d0ac8271eef3832ac1a1bec
176.7 kB Download
md5:c1914841d26af578617b4d110e9da8cc
178.5 kB Download
md5:b54326ac993cccdb260b494e17896872
176.1 kB Download
md5:936225fc229142614181e91c6a51b699
178.9 kB Download
md5:29874b447453ce3275c6d8afa5d2669d
178.7 kB Download
md5:3e160bc284f99f1620ae9db9f4fe1745
173.7 kB Download
md5:7e5ed454b08ea2a33e2e3bcf234ee91d
178.4 kB Download
md5:fe12052bc25e84f51baf507eb8b47376
170.6 kB Download
md5:eb7f7434a55bfe6c3c7117b82e3d6777
164.0 kB Download
md5:8222b8a6cf37df1b04264dbf4847f021
182.1 kB Download
md5:193471f635e720795f74255fd55c3f69
174.0 kB Download
md5:00c5f9f71720e4aa4739c63d4e6328e5
176.7 kB Download
md5:a4b3768181355686b936d5d31ec31ff8
173.0 kB Download
md5:6dc2a49efde991776844ef8cb3509406
173.2 kB Download
md5:f4d6b1bcfc6bbcc8f642f7f7f1d86838
176.3 kB Download
md5:d745afc184a4ce9bb9fdf6b72805342f
178.1 kB Download
md5:077099ce089fc5b151b9c29d535c3756
171.6 kB Download
md5:3566f9c0aeace8d29c9ccda3136ed39b
177.9 kB Download
md5:f7e9a97120b41df59cb3824423730487
172.1 kB Download
md5:74164c5d44cb5ff0c00453b1c88ca6da
178.1 kB Download
md5:3c272595a807933f277c14e66c098fe7
171.6 kB Download
md5:f09dc592b9c940daec2ad01dc323fd41
168.7 kB Download
md5:f47ea33b9c89168af8cd6c142063629a
170.2 kB Download
md5:b9c9dbc49e13c38f4396eddb3a886cd7
176.3 kB Download
md5:69002da455fa5d7652b411a4ea41b760
176.0 kB Download
md5:6ea53fe55da8055f4098cd3ca2d4c2dd
164.3 kB Download
md5:8fb1e8eae7cad10d177eee33ce4cbd1c
166.0 kB Download
md5:7fcdab0cd795a3f27f2797221cea352a
173.6 kB Download
md5:5f43ddab5a9a2bca5659238c087bc3e8
171.7 kB Download
md5:970e376da01d7dafbe90a36a95086b2c
178.7 kB Download
md5:be11272b8162b07574bc7dda2bf58f6e
171.2 kB Download
md5:e60f2fd1587ac9ce85839c89d23a5ee4
175.7 kB Download
md5:4ab66d6ea82b4cd2bf1c39a54e05d981
171.4 kB Download
md5:c898938b218c91633158b1bf2c5dac4e
174.8 kB Download
md5:98a5201bf737d8349af0113f979735ef
169.2 kB Download
md5:d7dfb74c5edb6cbbf1f2731f2877b7e9
166.3 kB Download
md5:873cda4da8a065f8cd7ced21acf3c67f
171.8 kB Download
md5:fc9d07e1930cfed91c29fabfdb3fc15b
172.7 kB Download
md5:1e3b176c224d125022dc26a337ee2430
177.2 kB Download
md5:8162ff005f1c54ec70f544fd9045a0df
174.0 kB Download
md5:006c74c3f75e5be7533784f5198578c9
173.3 kB Download
md5:19f8cd905fa705d157205f32992d48ed
172.9 kB Download
md5:ff656c4d39673a90388352fec7caceeb
175.3 kB Download
md5:e0279aa364a553bbeb0a6da5b8063940
173.2 kB Download
md5:a12df0ecb645503502ada09c91dc0ba0
172.1 kB Download
md5:4688b790d2c6e163c7d817855d97edb4
167.6 kB Download
md5:be3ac493dedbab6ac5a996097bc88ad2
172.4 kB Download
md5:871526b5bf3a4b827b60724df53d216d
170.5 kB Download
md5:682a820e7d780b3b1a4ac1a1f8b4ad9f
171.4 kB Download
md5:3e1ff1f50374a61f2f1b851c98ab2a2d
173.1 kB Download
md5:ba7a777a0699f808a942e04c4dc2095d
171.7 kB Download
md5:4ca3f6b09950640d1b588f843e849f5c
174.8 kB Download
md5:340740fbbcb2ff453b90b01b8bd21187
173.2 kB Download
md5:38d60e5b9c73d0cb9a10a06721f2f78f
177.0 kB Download
md5:42921b1fabb6540267b717f1092e14cd
179.4 kB Download
md5:364dfd6896aa3a733d4b39119823973e
177.7 kB Download
md5:e13e0cc9ab3f0040fa3db62ae3beccb5
172.0 kB Download
md5:2fd0b1f9ce05edbf88e72b3eeb5cf945
178.6 kB Download
md5:27e3aef76ab3d917b6de5ea8c67cfb75
176.1 kB Download
md5:5e2225b8b4a3147e5b10b3cc4a1ea2d0
170.1 kB Download
md5:7ec7cfd890357bfd7fe455c2a6ffcdc8
170.7 kB Download
md5:90665ebe7eb3879dea9e7f2aa418f46d
176.9 kB Download
md5:2eaaee55e30f5908500ae50ec36e9870
171.7 kB Download
md5:c4873136053c04ec824aba8280b98deb
171.1 kB Download
md5:ea364557f6cd1b8bc763925ccdec7718
174.2 kB Download
md5:e9ec4094d675be38675e5d01fccb0529
178.3 kB Download
md5:331a1137abed64d3de39f75b083d5dd1
169.1 kB Download
md5:003e83e3c6e8865ca0edfec430d7c8c9
171.2 kB Download
md5:cdd7bc5c63e877703147402a21336914
172.4 kB Download
md5:0d458264c14b5c5ca11b67cd714ea902
169.0 kB Download
md5:4e0342bd20eda3539607a0b049ae6e4c
184.3 kB Download
md5:bd16229463a6fe9cbd0e49fae3676b3c
168.7 kB Download
md5:f181b4d545435de72c3ad59998ccb287
170.2 kB Download
md5:f9ff452b8ae4ea95cfdd4d6666c128d5
178.7 kB Download
md5:ba68a595c4fba6ee152571b9a238c852
166.5 kB Download
md5:46a5755549bfb15bb408b731bba598f5
172.3 kB Download
md5:68149b8ccc6a49cfa6b2f62a65b35541
172.5 kB Download
md5:f4243dbf0723321aff021d5fa93bd943
178.8 kB Download
md5:d19479046d5cc2e24d51e4a387143083
172.8 kB Download
md5:4054cf78ae792663561174ace33d304f
179.6 kB Download
md5:4ec169de47b4d37e39b0e0db29bf868d
172.6 kB Download
md5:f8fa5292980789064a9ac49a5032b041
172.7 kB Download
md5:8fff636af9aa8cdf91a1a10dab957ba3
167.8 kB Download
md5:f82244363ca881025c943af1f0d0a092
178.7 kB Download
md5:a4ec8ebc036b0c464f11830cfb2d1ff1
166.0 kB Download
md5:c1af582576991b0f65912dff574eee0f
183.7 kB Download
md5:76e905052df3eb8f35fdccc9aa2d0687
174.0 kB Download
md5:a8a79dd53b2b174d0bee0428e15115f7
179.1 kB Download
md5:512d8231d8c64933050fa5479ffd3339
177.1 kB Download
md5:cc21feee2d2b94f7797c342963a85626
178.0 kB Download
md5:2e146f16cb6947b5cc1d289114a8c40f
172.7 kB Download
md5:be4a62cdc0fdd958eedc3cc2ee072e34
171.7 kB Download
md5:21544a8ebc197c1f3aeacd675a54a565
173.6 kB Download
md5:c7c23f31ff43a3eeb765c9e23890f9a7
177.5 kB Download
md5:123f508b34e89b66634837ca32347dd6
173.7 kB Download
md5:243a8328b2d87d6d40231eacddd100ae
167.4 kB Download

Additional details

References

  • Xiaoyu Tu, María Katherine Mejía-Guerra, Jose A Valdes Franco, David Tzeng, Po-Yu Chu, Xiuru Dai, Pinghua Li, Edward S Buckler, Silin Zhong. The transcription regulatory code of a plant leaf. bioRxiv 2020.01.07.898056; doi: https://doi.org/10.1101/2020.01.07.898056