Published May 18, 2020 | Version 1
Dataset Open

Curated list of HAR datasets

  • 1. Student

Contributors

Description

A curated list of preprocessed & ready to use under a minute Human Activity Recognition datasets.

All the datasets are preprocessed in HDF5 format, created using the h5py python library. Scripts used for data preprocessing are provided as well (Load.ipynb and load_jordao.py)

Each HDF5 file contains at least the keys:

  • x a single array of size [sample count, temporal length, sensor channel count], contains the actual sensor data. Metadata contains the names of individual sensor channel count. All samples are zero-padded for constant length in the file, original lengths before padding available under the meta keys.
  • y a single array of size [sample count] with integer values for target classes (zero-based). Metadata contains the names of the target classes.
  • meta contain various metadata, depends on the dataset (original length before padding, subject no., trial no., etc.)

Usage example

import h5py

with h5py.File(f'data/waveglove_multi.h5', 'r') as h5f:
     x = h5f['x']
     y = h5f['y']['class']
     print(f'WaveGlove-multi: {x.shape[0]} samples')
     print(f'Sensor channels: {h5f["x"].attrs["channels"]}')
     print(f'Target classes: {h5f["y"].attrs["labels"]}')
     first_sample = x[0]
# Output:      
# WaveGlove-multi: 10044 samples
# Sensor channels: ['acc1-x' 'acc1-y' 'acc1-z' 'gyro1-x' 'gyro1-y' 'gyro1-z' 'acc2-x'
#  'acc2-y' 'acc2-z' 'gyro2-x' 'gyro2-y' 'gyro2-z' 'acc3-x' 'acc3-y'
#  'acc3-z' 'gyro3-x' 'gyro3-y' 'gyro3-z' 'acc4-x' 'acc4-y' 'acc4-z'
#  'gyro4-x' 'gyro4-y' 'gyro4-z' 'acc5-x' 'acc5-y' 'acc5-z' 'gyro5-x'
#  'gyro5-y' 'gyro5-z']
# Target classes: ['null' 'hand swipe left' 'hand swipe right' 'pinch in' 'pinch out'
#  'thumb double tap' 'grab' 'ungrab' 'page flip' 'peace' 'metal']

Current list of datasets:

  • WaveGlove-single (waveglove_single.h5)
  • WaveGlove-multi (waveglove_multi.h5)
  • uWave (uwave.h5)
  • OPPORTUNITY (opportunity.h5)
  • PAMAP2 (pamap2.h5)
  • SKODA (skoda.h5)
  • MHEALTH (non overlapping windows) (mhealth.h5)
  • Six datasets with all four predefined train/test folds
    as preprocessed by Jordao et al. originally in WearableSensorData
    (FNOW, LOSO, LOTO and SNOW prefixed .h5 files)

Files

Load.ipynb

Files (4.7 GB)

Name Size Download all
md5:2c9b50fd010e55b8bf285916b22539d9
62.2 MB Download
md5:7ef8e9997d75611d669f3db41aef82e4
121.2 MB Download
md5:7c03cdfe9c522ad85a77db853771d4ce
5.0 MB Download
md5:c9d68b938d61e2617f842ed6f00b4004
1.5 MB Download
md5:85508b953d92c1e9fa71ca9c4ca97520
8.4 MB Download
md5:01d60a453daeeac86bae9b8917236dae
25.8 MB Download
md5:b658a1bea9f8a5552551b9979182dd00
29.7 kB Preview Download
md5:b82ba6a44fd7e61040ed8a1888004e08
3.2 kB Download
md5:46c90d00721cfee94ae6d3a6b688e568
117.7 MB Download
md5:1db3a4e5d5031c9155029f9f8100a35d
236.4 MB Download
md5:f3c08454613e7606aaf6748148de2a08
9.2 MB Download
md5:ad3ec1df615b9ab3c9677ca844d00287
2.8 MB Download
md5:fc16aaa3d340287d3cc28ff07ff2c666
15.2 MB Download
md5:17ce9a58e94afe60259d23089a012466
53.3 MB Download
md5:0df1dff744ba99913f618dd3da989da6
117.7 MB Download
md5:3fe271e97f4a156e4e4b098873cf45b5
236.3 MB Download
md5:80f5a7af0e06700c65a22388998672a5
9.3 MB Download
md5:22f3761bbfaead3a920f3dd37f676ac9
2.8 MB Download
md5:c65c3f0389eb14af75568e1087cc0ad8
15.1 MB Download
md5:5323817ca258f1019fe25a2cd63ad277
51.1 MB Download
md5:2b89707ebee9c6e590abf48fcaf25138
61.4 MB Download
md5:de88842141b423e3c5c94eede823278d
1.5 GB Download
md5:f9cbe4ade48b30b6bbb9043da16f64fa
779.7 MB Download
md5:ffebb7670cefa6b98b7e8d31efb1a35b
453.3 MB Download
md5:9ddd3cae02946c16b2e6daa0c292250d
117.7 MB Download
md5:290152b3faf7a2a13aa3393aff5cc457
236.3 MB Download
md5:ea6424029d52f048830d26c4988fa0a2
9.3 MB Download
md5:aa60fc4c8938f8c9428f6e3e0404c4d5
2.8 MB Download
md5:7441586e7a934a143227d9a3bc4de96b
15.1 MB Download
md5:ce401f338dc0bd8f7d8c137194e87021
51.1 MB Download
md5:91971215016d46331d4fd47687b2aaf3
33.9 MB Download
md5:fda0f51cdcc223d31bb925d79dee5ea8
313.5 MB Download
md5:8df4155c2c2c9540683cb2f639b8c8d0
31.9 MB Download

Additional details

References

  • Artur Jordao, Antonio C. Nazare Jr., Jessica Sena de Souza, William Robson Schwartz: Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art.
  • Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan, "uWave: Accelerometer-based personalized gesture recognition and its applications," in IEEE Int. Conf. Pervasive Computing and Communication (PerCom), March 2009.
  • Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Gerhard Tröster, Paul Lukowicz, Gerald Pirkl, David Bannach, Alois Ferscha, Jakob Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo Chavarriaga, Hesam Sagha, Hamidreza Bayati, and José del R. Millán. "Collecting complex activity data sets in highly rich networked sensor environments" In Seventh International Conference on Networked Sensing Systems (INSS'10), Kassel, Germany, 6 2010.
  • A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring. The 16th IEEE International Symposium on Wearable Computers (ISWC), 2012.
  • A. Reiss and D. Stricker. Creating and Benchmarking a New Dataset for Physical Activity Monitoring. The 5th Workshop on Affect and Behaviour Related Assistance (ABRA), 2012.
  • P. Zappi, D. Roggen, E. Farella, G. Troster. and L. Benini Network-level power-performance trade-off in wearable activity recognition: a dynamic sensor selection approach. In ACM Transactions on Embedded Computing Systems 11(3), 2012
  • Banos, O., Garcia, R., Holgado, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., Villalonga, C. mHealthDroid: a novel framework for agile development of mobile health applications. Proceedings of the 6th International Work-conference on Ambient Assisted Living an Active Ageing (IWAAL 2014), Belfast, Northern Ireland, December 2-5, (2014).
  • Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado, J. A., Lee, S., Pomares, H., Rojas, I. Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMedical Engineering OnLine, vol. 14, no. S2:S6, pp. 1-20 (2015).
  • Mi Zhang and Alexander A. Sawchuk, "USC-HAD: A Daily Activity Dataset for Ubiquitous Activity Recognition Using Wearable Sensors", ACM International Conference on Ubiquitous Computing (UbiComp) Workshop on Situation, Activity and Goal Awareness (SAGAware), Pittsburgh, Pennsylvania, USA, September 2012.
  • C. Chen, R. Jafari, and N. Kehtarnavaz, "UTD-MHAD: A Multimodal Dataset for Human Action Recognition Utilizing a Depth Camera and a Wearable Inertial Sensor", Proceedings of IEEE International Conference on Image Processing, Canada, September 2015.
  • Bruno, B., Mastrogiovanni, F., Sgorbissa, A.: A Public Domain Dataset for ADL Recognition Using Wrist-placed Accelerometers In: IEEE Int Symp on Robot and Human Interactive Communication (RO-MAN), 2014
  • Jennifer R. Kwapisz, Gary M. Weiss and Samuel A. Moore (2010). Activity Recognition using Cell Phone Accelerometers, Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC.