Published May 18, 2020
| Version 1
Dataset
Open
Curated list of HAR datasets
Contributors
Supervisors:
Description
A curated list of preprocessed & ready to use under a minute Human Activity Recognition datasets.
All the datasets are preprocessed in HDF5 format, created using the h5py python library. Scripts used for data preprocessing are provided as well (Load.ipynb and load_jordao.py)
Each HDF5 file contains at least the keys:
x
a single array of size[sample count, temporal length, sensor channel count]
, contains the actual sensor data. Metadata contains the names of individual sensor channel count. All samples are zero-padded for constant length in the file, original lengths before padding available under themeta
keys.y
a single array of size[sample count]
with integer values for target classes (zero-based). Metadata contains the names of the target classes.meta
contain various metadata, depends on the dataset (original length before padding, subject no., trial no., etc.)
Usage example
import h5py
with h5py.File(f'data/waveglove_multi.h5', 'r') as h5f:
x = h5f['x']
y = h5f['y']['class']
print(f'WaveGlove-multi: {x.shape[0]} samples')
print(f'Sensor channels: {h5f["x"].attrs["channels"]}')
print(f'Target classes: {h5f["y"].attrs["labels"]}')
first_sample = x[0]
# Output:
# WaveGlove-multi: 10044 samples
# Sensor channels: ['acc1-x' 'acc1-y' 'acc1-z' 'gyro1-x' 'gyro1-y' 'gyro1-z' 'acc2-x'
# 'acc2-y' 'acc2-z' 'gyro2-x' 'gyro2-y' 'gyro2-z' 'acc3-x' 'acc3-y'
# 'acc3-z' 'gyro3-x' 'gyro3-y' 'gyro3-z' 'acc4-x' 'acc4-y' 'acc4-z'
# 'gyro4-x' 'gyro4-y' 'gyro4-z' 'acc5-x' 'acc5-y' 'acc5-z' 'gyro5-x'
# 'gyro5-y' 'gyro5-z']
# Target classes: ['null' 'hand swipe left' 'hand swipe right' 'pinch in' 'pinch out'
# 'thumb double tap' 'grab' 'ungrab' 'page flip' 'peace' 'metal']
Current list of datasets:
- WaveGlove-single (waveglove_single.h5)
- WaveGlove-multi (waveglove_multi.h5)
- uWave (uwave.h5)
- OPPORTUNITY (opportunity.h5)
- PAMAP2 (pamap2.h5)
- SKODA (skoda.h5)
- MHEALTH (non overlapping windows) (mhealth.h5)
- Six datasets with all four predefined train/test folds
as preprocessed by Jordao et al. originally in WearableSensorData
(FNOW, LOSO, LOTO and SNOW prefixed .h5 files)
Files
Load.ipynb
Files
(4.7 GB)
Name | Size | Download all |
---|---|---|
md5:2c9b50fd010e55b8bf285916b22539d9
|
62.2 MB | Download |
md5:7ef8e9997d75611d669f3db41aef82e4
|
121.2 MB | Download |
md5:7c03cdfe9c522ad85a77db853771d4ce
|
5.0 MB | Download |
md5:c9d68b938d61e2617f842ed6f00b4004
|
1.5 MB | Download |
md5:85508b953d92c1e9fa71ca9c4ca97520
|
8.4 MB | Download |
md5:01d60a453daeeac86bae9b8917236dae
|
25.8 MB | Download |
md5:b658a1bea9f8a5552551b9979182dd00
|
29.7 kB | Preview Download |
md5:b82ba6a44fd7e61040ed8a1888004e08
|
3.2 kB | Download |
md5:46c90d00721cfee94ae6d3a6b688e568
|
117.7 MB | Download |
md5:1db3a4e5d5031c9155029f9f8100a35d
|
236.4 MB | Download |
md5:f3c08454613e7606aaf6748148de2a08
|
9.2 MB | Download |
md5:ad3ec1df615b9ab3c9677ca844d00287
|
2.8 MB | Download |
md5:fc16aaa3d340287d3cc28ff07ff2c666
|
15.2 MB | Download |
md5:17ce9a58e94afe60259d23089a012466
|
53.3 MB | Download |
md5:0df1dff744ba99913f618dd3da989da6
|
117.7 MB | Download |
md5:3fe271e97f4a156e4e4b098873cf45b5
|
236.3 MB | Download |
md5:80f5a7af0e06700c65a22388998672a5
|
9.3 MB | Download |
md5:22f3761bbfaead3a920f3dd37f676ac9
|
2.8 MB | Download |
md5:c65c3f0389eb14af75568e1087cc0ad8
|
15.1 MB | Download |
md5:5323817ca258f1019fe25a2cd63ad277
|
51.1 MB | Download |
md5:2b89707ebee9c6e590abf48fcaf25138
|
61.4 MB | Download |
md5:de88842141b423e3c5c94eede823278d
|
1.5 GB | Download |
md5:f9cbe4ade48b30b6bbb9043da16f64fa
|
779.7 MB | Download |
md5:ffebb7670cefa6b98b7e8d31efb1a35b
|
453.3 MB | Download |
md5:9ddd3cae02946c16b2e6daa0c292250d
|
117.7 MB | Download |
md5:290152b3faf7a2a13aa3393aff5cc457
|
236.3 MB | Download |
md5:ea6424029d52f048830d26c4988fa0a2
|
9.3 MB | Download |
md5:aa60fc4c8938f8c9428f6e3e0404c4d5
|
2.8 MB | Download |
md5:7441586e7a934a143227d9a3bc4de96b
|
15.1 MB | Download |
md5:ce401f338dc0bd8f7d8c137194e87021
|
51.1 MB | Download |
md5:91971215016d46331d4fd47687b2aaf3
|
33.9 MB | Download |
md5:fda0f51cdcc223d31bb925d79dee5ea8
|
313.5 MB | Download |
md5:8df4155c2c2c9540683cb2f639b8c8d0
|
31.9 MB | Download |
Additional details
References
- Artur Jordao, Antonio C. Nazare Jr., Jessica Sena de Souza, William Robson Schwartz: Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art.
- Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan, "uWave: Accelerometer-based personalized gesture recognition and its applications," in IEEE Int. Conf. Pervasive Computing and Communication (PerCom), March 2009.
- Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Gerhard Tröster, Paul Lukowicz, Gerald Pirkl, David Bannach, Alois Ferscha, Jakob Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo Chavarriaga, Hesam Sagha, Hamidreza Bayati, and José del R. Millán. "Collecting complex activity data sets in highly rich networked sensor environments" In Seventh International Conference on Networked Sensing Systems (INSS'10), Kassel, Germany, 6 2010.
- A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring. The 16th IEEE International Symposium on Wearable Computers (ISWC), 2012.
- A. Reiss and D. Stricker. Creating and Benchmarking a New Dataset for Physical Activity Monitoring. The 5th Workshop on Affect and Behaviour Related Assistance (ABRA), 2012.
- P. Zappi, D. Roggen, E. Farella, G. Troster. and L. Benini Network-level power-performance trade-off in wearable activity recognition: a dynamic sensor selection approach. In ACM Transactions on Embedded Computing Systems 11(3), 2012
- Banos, O., Garcia, R., Holgado, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., Villalonga, C. mHealthDroid: a novel framework for agile development of mobile health applications. Proceedings of the 6th International Work-conference on Ambient Assisted Living an Active Ageing (IWAAL 2014), Belfast, Northern Ireland, December 2-5, (2014).
- Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado, J. A., Lee, S., Pomares, H., Rojas, I. Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMedical Engineering OnLine, vol. 14, no. S2:S6, pp. 1-20 (2015).
- Mi Zhang and Alexander A. Sawchuk, "USC-HAD: A Daily Activity Dataset for Ubiquitous Activity Recognition Using Wearable Sensors", ACM International Conference on Ubiquitous Computing (UbiComp) Workshop on Situation, Activity and Goal Awareness (SAGAware), Pittsburgh, Pennsylvania, USA, September 2012.
- C. Chen, R. Jafari, and N. Kehtarnavaz, "UTD-MHAD: A Multimodal Dataset for Human Action Recognition Utilizing a Depth Camera and a Wearable Inertial Sensor", Proceedings of IEEE International Conference on Image Processing, Canada, September 2015.
- Bruno, B., Mastrogiovanni, F., Sgorbissa, A.: A Public Domain Dataset for ADL Recognition Using Wrist-placed Accelerometers In: IEEE Int Symp on Robot and Human Interactive Communication (RO-MAN), 2014
- Jennifer R. Kwapisz, Gary M. Weiss and Samuel A. Moore (2010). Activity Recognition using Cell Phone Accelerometers, Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC.