Published May 6, 2020 | Version v1
Dataset Open

Seasonal Precipitation and Temperature Data in Canberra, Australia

Description

This dataset contains the precipitation, mean maximum temperature and mean minimum temperature data used in the study Application of Machine Learning to Attribution and Prediction of Seasonal Precipitation and Temperature Trends in Canberra, Australia. This data was originally from the Australian Bureau of Meteorology Climate Data Online (http://www.bom.gov.au/climate/data/index.shtml), but has been updated to have missing values (1% of data) filled using a moving average centred on the year for which the data is missing. 

Below is the abstract for the paper.

Southeast Australia is frequently impacted by drought, requiring monitoring of how the various factors influencing drought change over time. Precipitation and temperature trends were analysed for Canberra, Australia, revealing decreasing autumn precipitation. However, annual precipitation remains stable as summer precipitation increased and the other seasons show no trend. Further, mean temperature increases in all seasons. These results suggest that Canberra is increasingly vulnerable to drought. Wavelet analysis suggests that the El-Niño Southern Oscillation (ENSO) influences precipitation and temperature in Canberra, although its impact on precipitation has decreased since the 2000s. Linear regression (LR) and support vector regression (SVR) were applied to attribute climate drivers of annual precipitation and mean maximum temperature (TMax). Important attributes of precipitation include ENSO, the southern annular mode (SAM), Indian Ocean Dipole (DMI) and Tasman Sea SST anomalies. Drivers of TMax included DMI and global warming attributes. The SVR models achieved high correlations of 0.737 and 0.531 on prediction of precipitation and TMax, respectively, outperforming the LR models which obtained correlations of 0.516 and 0.415 for prediction of precipitation and TMax on the testing data. This highlights the importance of continued research utilising machine learning methods for prediction of atmospheric variables and weather pattens on multiple time scales.

Files

CanberraPrecipData.txt

Files (16.5 kB)

Name Size Download all
md5:2ac91eb344efc25cb82633c27e30fd4b
5.7 kB Preview Download
md5:f7f593041e2a4559d69c891f1c0ba78f
5.7 kB Preview Download
md5:e1608845df7beb7726ed4c0743861764
5.1 kB Preview Download