Published April 14, 2020
| Version v3
Dataset
Open
Experimental Data Sets for the study "Benchmarking a $(\mu+\lambda)$ Genetic Algorithm with Configurable Crossover Probability"
Creators
- 1. LIACS, Leiden University
- 2. LIP6, Sorbonne Université
- 3. CNRS, LIP6, Sorbonne Université
Description
This is the experimental result of the study "Benchmarking a (μ+λ) Genetic Algorithm with Configurable Crossover Probability". A novel (μ+λ) GA is proposed and benchmarked, in which we stochastically determine whether to apply the crossover operator either for each individual or generation with a crossover probability \(p_c\). This data set consists of two parts:
- The results of (μ+λ) GA on 25 pseudo-Boolean problems defined in IOHprofiler (https://iohprofiler.github.io/) with the following setup: \(\mu \in \{10, 50, 100\}, \lambda \in \{1, \lceil\mu/2\rceil, \mu\}, p_c\in\{0, 0.5\}.\)
- 'IOHprofiler_Problems_standard_bit_mutation.csv' --> the (μ+λ) GA with standard bit mutation.
- 'IOHprofiler_Problems_fast_mutation.csv' --> the (μ+λ) GA with fast mutation.
- The results of (μ+λ) GA on OneMax and LeadingOnes problems with the following setup: \(n \in \{64,100,150,200,250,500\}, \mu \in \{2,3,5,8,10,20,30,...,100\}, \\ \lambda \in \{1, \lceil \mu/2 \rceil, \mu\}, \text{and }p_c \in \{0.1 k \mid k \in [0..9]\}\cup\{0.95\}.\)
- 'OneMax_raw.csv' --> the fixed-target running time/first hitting time from 100 independent runs for target values in \([1..n]\).
- 'OneMax_summary.csv' --> the mean, median, standard deviation, some quantiles, expected running time (ERT), the number of successful runs, and the success rate from 100 independent runs for target values in \([1..n]\).
- 'LeadingOnes_raw.csv' --> the same with 'OneMax_raw.csv' for LeadingOnes.
- 'LeadingOnes_summary.csv' --> the same with 'OneMax_summary.csv' for LeadingOnes.
Contact: if you have any questions or suggestions, please feel free to contact Furong Ye or Carola Doerr.
Files
IOHprofiler_Problems_fast_mutation.csv
Files
(662.6 MB)
Name | Size | Download all |
---|---|---|
md5:2f193a894d2ffcf9d358067bec40183c
|
200.5 kB | Preview Download |
md5:a4af7ad73e15183e8d123d64ad4e2c55
|
209.9 kB | Preview Download |
md5:eeca9a34091cb72c7dcaa40d25fc527a
|
348.7 MB | Preview Download |
md5:997afc194f6531cfd2d18ae8602c8764
|
73.2 MB | Preview Download |
md5:57560d2d6551ae0bee51e59e69bceaf9
|
191.6 MB | Preview Download |
md5:1ce101ba4ad18fa37096cf578c8b90a8
|
48.7 MB | Preview Download |