File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published January 31, 2020 | Version v1
Journal article Open

DEVELOPMENT OF METHODS FOR DETERMINING THE CONTOURS OF OBJECTS FOR A COMPLEX STRUCTURED COLOR IMAGE BASED ON THE ANT COLONY OPTIMIZATION ALGORITHM

  • 1. Ivan Kozhedub Kharkiv National Air Force University
  • 2. Kharkiv National University of Radio Electronics
  • 3. Zhytomyr Military Institute named after S. P. Korolyov
  • 4. Institute of Telecommunications and Global Information Space
  • 5. Kharkiv National University named after V. N. Karazin

Description

A method for determining the contours of objects on complexly structured color images based on the ant colony optimization algorithm is proposed. The method for determining the contours of objects of interest in complexly structured color images based on the ant colony optimization algorithm, unlike the known ones, provides for the following. Color channels are highlighted. In each color channel, a brightness channel is allocated. The contours of objects of interest are determined by the method based on the ant colony optimization algorithm. At the end, the transition back to the original color model (the combination of color channels) is carried out.

A typical complex structured color image is processed to determine the contours of objects using the ant colony optimization algorithm. The image is presented in the RGB color space. It is established that objects of interest can be determined on the resulting image. At the same time, the presence of a large number of "garbage" objects on the resulting image is noted. This is a disadvantage of the developed method.

A visual comparison of the application of the developed method and the known methods for determining the contours of objects is carried out. It is established that the developed method improves the accuracy of determining the contours of objects. Errors of the first and second kind are chosen as quantitative indicators of the accuracy of determining the contours of objects in a typical complex structured color image. Errors of the first and second kind are determined by the criterion of maximum likelihood, which follows from the generalized criterion of minimum average risk. The errors of the first and second kind are estimated when determining the contours of objects in a typical complex structured color image using known methods and the developed method. The well-known methods are the Canny, k-means (k=2), k-means (k=3), Random forest methods. It is established that when using the developed method based on the ant colony optimization algorithm, the errors in determining the contours of objects are reduced on average by 5–13 %.

Files

DEVELOPMENT OF METHODS FOR DETERMINING THE CONTOURS OF OBJECTS FOR A COMPLEX STRUCTURED COLOR IMAGE BASED ON THE ANT COLONY OPTIMIZATION ALGORITHM.pdf

Additional details

References

  • Gonzalez, R., Woods, R. (2017). Digital Image Processing. Prentice Hall, Upper Saddle Rever, 1192.
  • Richards, J. (2013). Remote Sensing Digital Image Analysis. An Introduction. Springer. doi: https://doi.org/10.1007/978-3-642-30062-2
  • Vysotska, V., Lytvyn, V., Burov Y., Gozhyj, A., Makara, S. (2018). The consolidated information web-resource about pharmacy networks in city. CEUR, 239–255.
  • Stryzhak, O., Prychodniuk, V., Podlipaiev, V. (2019). Model of Transdisciplinary Representation of GEOspatial Information. Advances in Information and Communication Technologies, 34–75. doi: https://doi.org/10.1007/978-3-030-16770-7_3
  • El-Baz, A., Jiang, X., Jasjit, S. (Eds.) (2016). Biomedical image segmentation. Advances and trends. CRC Press, 546. doi: https://doi.org/10.4324/9781315372273
  • Karamti, H., Tmar, M., Gargouri, F. (2017). A new vector space model for image retrieval. Procedia Computer Science, 112, 771–779. doi: https://doi.org/10.1016/j.procs.2017.08.202
  • Gupta, V., Singh, D., Sharma, P. (2016). Image Segmentation Using Various Edge Detection Operators: A Comparative Study. International Journal of Innovative Research in Computer and Communication Engineering, 4 (8), 14819–14824.
  • Kabade, A., Sangam, V. (2016). Canny edge detection algorithm. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), 5 (5), 1292–1295.
  • Carson, C., Thomas, M., Belongie, S., Hellerstein, J. M., Malik, J. (1999). Blobworld: A System for Region-Based Image Indexing and Retrieval. Lecture Notes in Computer Science, 509–517. doi: https://doi.org/10.1007/3-540-48762-x_63
  • Natsev, A., Rastogi, R., Shim, K. (1999). WALRUS. ACM SIGMOD Record, 28 (2), 395–406. doi: https://doi.org/10.1145/304181.304217
  • Bartolini, I., Patella, M., Stromei, G. (2011). The windsurf library for the efficient retrieval of multimedia hierarchical data. Proceedings of the International Conference on Signal Processing and Multimedia Applications. doi: https://doi.org/10.5220/0003451701390148
  • Yang, M., Chao, H., Zhang, C., Guo, J., Yuan, L., Sun, J. (2016). Effective Clipart Image Vectorization Through Direct Optimization of Bezigons. IEEE Transactions on Visualization and Computer Graphics. Available at: https://arxiv.org/pdf/1602.01913.pdf
  • Sum, K., S. Cheung, P. (2006). A Fast Parametric Snake Model with Enhanced Concave Object Extraction Capability. 2006 IEEE International Symposium on Signal Processing and Information Technology. doi: https://doi.org/10.1109/isspit.2006.270844
  • Karamti, H., Tmar, M., Gargouri, F. (2014). Vectorization of Content-based Image Retrieval Process Using Neural Network. Proceedings of the 16th International Conference on Enterprise Information Systems. doi: https://doi.org/10.5220/0004972004350439
  • Nyandwi, E., Koeva, M., Kohli D., Bennett, R. (2019). Comparing Human Versus Machine-Driven Cadastral Boundary Feature Extraction. Remote Sens, 11, 1662. doi: https://doi.org/10.20944/preprints201905.0342.v1
  • Ramlau, R., Scherzer, O. (2019). The Radon Transform. Berlin/Boston: Walter de Gruyter GmbH. doi: https://doi.org/10.1515/9783110560855
  • Li, Z., Liu, Y., Walker, R., Hayward, R., Zhang, J. (2009). Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform. Machine Vision and Applications, 21 (5), 677–686. doi: https://doi.org/10.1007/s00138-009-0206-y
  • Manzanera, A., Nguyen, T. P., Xu, X. (2016). Line and circle detection using dense one-to-one Hough transforms on greyscale images. EURASIP Journal on Image and Video Processing, 2016 (1). doi: https://doi.org/10.1186/s13640-016-0149-y
  • Faroogue, M. Y., Raeen, M. S. (2014). Latest trends on image segmentation schemes. International journal of advanced research in computer science and software engineering, 4 (10), 792–795.
  • Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N. (2012). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42 (1), 21–57. doi: https://doi.org/10.1007/s10462-012-9328-0
  • Dorigo, M., Stützle, T. (2018). Ant Colony Optimization: Overview and Recent Advances. International Series in Operations Research & Management Science, 311–351. doi: https://doi.org/10.1007/978-3-319-91086-4_10
  • Choudhary, R., Gupta, R. (2017). Recent Trends and Techniques in Image Enhancement using Differential Evolution- A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 7 (4), 106–112. doi: https://doi.org/10.23956/ijarcsse/v7i4/0108
  • Ruban, I., Khudov, H., Makoveichuk, O., Chomik, M., Khudov, V., Khizhnyak, I. et. al. (2019). Construction of methods for determining the contours of objects on tonal aerospace images based on the ant algorithms. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 25–34. doi: https://doi.org/10.15587/1729-4061.2019.177817
  • Gauch, H. (2002). Scientific Method in Practice. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511815034
  • Ikonos Satellite Image Gallery. Available at: https://www.satimagingcorp.com/gallery/ikonos/
  • Pelleg, D., Moore, A. (2000). X-means: Extending k-means with efficient estimation of the number of clusters. Proceeding of the 17th International Conference on Machine Learning. San Francisco, 727734.
  • Gonzaga, A. (2009). Method to Evaluate the Performance of Edge Detector. The XXII Brazilian Symposium on Computer Graphics and Image Processing, 87–91.