Supporting Dataset for "Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests"
Creators
- 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- 2. International Institute of Tropical Forestry, USDA Forest Service, Rio Piedras, Puerto Rico
- 3. Embrapa Informática Agropecuária
- 4. NASA Goddard Space Flight Center, Greenbelt, MD, United States
- 5. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- 6. AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, 34000 France
- 7. Université de Lorraine, INRAE, AgroParisTech, UMR Silva, F-54000 Nancy, France
- 8. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane), Campus Agronomique, Kourou 97379, France
- 9. Department of Earth System Science, University of California, Irvine, CA, United States
- 10. Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UMR 0745 EcoFoG, Campus Agronomique, Kourou 97379, France
- 11. University of Arizona, Tucson, AZ, United States
- 12. Max-Planck-Institut für Biochemie
Description
This data set is a supplement for:
Longo, M., S. S. Saatchi, M. Keller, K. W. Bowman, A. Ferraz, P. R. Moorcroft, D. Morton, D. Bonal, P. Brando, B. Burban, G. Derroire, M. N. dos-Santos, V. Meyer, S. R. Saleska, S. Trumbore, and G. Vin- cent, 2020: Impacts of degradation on water, energy, and carbon cycling of the Amazon tropical forests. J. Geophys. Res.-Biogeosci., 125 (8), e2020JG005 677, doi:10.1029/2020JG005677.
This data set contains the following files (which should be all downloaded and uncompressed in the same root directory):
- 00_SiteLidar.zip – R scripts to process forest inventory plots and Airborne LiDAR point clouds. Sub-directories contains a directory Template, which should be copied for each site for which data are to be processed.
- 01_LidarSynthesis.zip – R scripts to fit the statistical models of aggregated properties, and to evaluate both the statistical model and the prediction of Airborne LiDAR profiles to be used to initialize ED-2.2.
- 02_model_eval.zip – R scripts to compare the ED-2.2 model output and evaluate the model against tower observations.
- 03_degrad_mtr – R scripts to visualize the ED-2.2 simulation results.
- InputData – Miscellaneous data to be used by the scripts.
- Util – Additional R scripts
- Rsc – Mostly R functions, which may be called by other R scripts
- OutsideLAS – List of plots that were not fully overlapped by the Airborne LiDAR surveys
- GenMERRA2_ED2 – Utility scripts to process MERRA-2 to generate the met drivers needed by ED-2.2
- GenMSWEP2_ED2 – Utility scripts to process MSWEP-2.2 to generate the met drivers needed by ED-2.2
- ED2IN_Config – list of ED2IN files used in the runs.
To see the input data used for this analysis, load any of the objects available in 01_LidarSynthesis/01_eval_multivar, and look for the following structures:
Variable | Structure | Description | Units |
---|---|---|---|
identifier | census[[1]], rlidar[[1]], tchdat[[1]] | Plot identifier. This always has the site identifier (see below), the area within each site, the nominal year of the campaign, the unique sub-plot ID (Pxx_Byy for rectangular plots, and Txx_Pyy for long transects) | |
iata |
census[[1]], rlidar[[1]], tchdat[[1]] |
Site identifier:
|
|
local | census[[1]], rlidar[[1]], tchdat[[1]] |
Region identifier (used for regional cross-validation):
|
|
poi | census[[1]], rlidar[[1]], tchdat[[1]] | Nominal size of each plot | |
when | census[[1]], rlidar[[1]], tchdat[[1]] | Date of measurement | |
col | census[[1]], rlidar[[1]], tchdat[[1]] | Colour associated with plot (for plotting only) | |
pch | census[[1]], rlidar[[1]], tchdat[[1]] | Symbol associated with plot (for plotting only) | |
dist.key | census[[1]], rlidar[[1]], tchdat[[1]] |
Disturbance flag:
|
|
dist.age | census[[1]], rlidar[[1]], tchdat[[1]] | Age since last disturbance | yr |
dist.col | census[[1]], rlidar[[1]], tchdat[[1]] | Colour associated with disturbance (for plotting only) | |
dist.pch | census[[1]], rlidar[[1]], tchdat[[1]] | Symbol associated with disturbance (for plotting only) | |
agb.std | census[[1]] | Above-ground biomass of individuals with DBH ≥ 10 cm | kgC m−2 |
ba.std | census[[1]] | Basal area of individuals with DBH ≥ 10 cm | cm2 m−2 |
lai.std | census[[1]] | Potential (allometry-based) leaf area index of individuals with DBH ≥ 10 cm | m2 m−2 |
nplant.std | census[[1]] | Stem number density of individuals with DBH ≥ 10 cm | m−2 |
elev.mean | rlidar[[1]] | Mean elevation of point cloud return distribution (all returns) | m |
elev.sdev | rlidar[[1]] | Standard deviation of point cloud return distribution (all returns) | m |
elev.skew | rlidar[[1]] | Skewness of point cloud return distribution (all returns) | m |
elev.kurt | rlidar[[1]] | Kurtosis of point cloud return distribution (all returns) | m |
elev.p01 | rlidar[[1]] | 1st percentile of the point cloud return distribution (all returns) | m |
elev.p05 | rlidar[[1]] | 5th percentile of the point cloud return distribution (all returns) | m |
elev.p10 | rlidar[[1]] | 10th percentile of the point cloud return distribution (all returns) | m |
elev.p25 | rlidar[[1]] | 25th percentile of the point cloud return distribution (all returns) | m |
elev.p50 | rlidar[[1]] | 50th percentile (median) of the point cloud return distribution (all returns) | m |
elev.p75 | rlidar[[1]] | 75th percentile of the point cloud return distribution (all returns) | m |
elev.p90 | rlidar[[1]] | 90th percentile of the point cloud return distribution (all returns) | m |
elev.p95 | rlidar[[1]] | 95th percentile of the point cloud return distribution (all returns) | m |
elev.p99 | rlidar[[1]] | 99th percentile of the point cloud return distribution (all returns) | m |
elev.iqr | rlidar[[1]] | Interquartile range of the point cloud return distribution (all returns) | m |
elev.max | rlidar[[1]] | Maximum of the point cloud return distribution (all returns) | m |
fcan.elev.1.0.to.2.5.m | rlidar[[1]] | Fraction of returns between 1.0 and 2.5 m | fraction [0-1] |
fcan.elev.2.5.to.5.0.m | rlidar[[1]] | Fraction of returns between 2.5 and 5.0 m | fraction [0-1] |
fcan.elev.5.0.to.7.5.m | rlidar[[1]] | Fraction of returns between 5.0 and 7.5 m | fraction [0-1] |
fcan.elev.7.5.to.10.0.m | rlidar[[1]] | Fraction of returns between 7.5 and 10.0 m | fraction [0-1] |
fcan.elev.10.0.to.15.0.m | rlidar[[1]] | Fraction of returns between 10.0 and 15.0 m | fraction [0-1] |
fcan.elev.15.0.to.20.0.m | rlidar[[1]] | Fraction of returns between 15.0 and 20.0 m | fraction [0-1] |
fcan.elev.20.0.to.25.0.m | rlidar[[1]] | Fraction of returns between 20.0 and 25.0 m | fraction [0-1] |
fcan.elev.25.0.to.30.0.m | rlidar[[1]] | Fraction of returns between 25.0 and 30.0 m | fraction [0-1] |
fcan.elev.above.1.0.m | rlidar[[1]] | Fraction of returns above 1.0 m | fraction [0-1] |
fcan.elev.above.2.5.m | rlidar[[1]] | Fraction of returns above 2.5 m | fraction [0-1] |
fcan.elev.above.5.0.m | rlidar[[1]] | Fraction of returns above 5.0 m | fraction [0-1] |
fcan.elev.above.7.5.m | rlidar[[1]] | Fraction of returns above 7.5 m | fraction [0-1] |
fcan.elev.above.10.0.m | rlidar[[1]] | Fraction of returns above 10.0 m | fraction [0-1] |
fcan.elev.above.15.0.m | rlidar[[1]] | Fraction of returns above 15.0 m | fraction [0-1] |
fcan.elev.above.20.0.m | rlidar[[1]] | Fraction of returns above 20.0 m | fraction [0-1] |
fcan.elev.above.25.0.m | rlidar[[1]] | Fraction of returns above 25.0 m | fraction [0-1] |
fcan.elev.above.30.0.m | rlidar[[1]] | Fraction of returns above 30.0 m | fraction [0-1] |
ztch | tchdat[[1]] | Mean top canopy height (0.25ha average from 1-m pixels) | m |
Files
00_SiteLidar.zip
Files
(7.0 GB)
Name | Size | Download all |
---|---|---|
md5:f051d463fa6cc79f0355b4b796c8ae72
|
160.6 kB | Preview Download |
md5:414e35fbb7e19f728c3eafbd326729fa
|
1.2 GB | Preview Download |
md5:981003d2ec7d30d32d7150f042f1b882
|
21.1 kB | Preview Download |
md5:f6f7febe8478a8054c074d266d0a750f
|
61.0 kB | Preview Download |
md5:3db91b081b16957b37ffefec34439c04
|
933.5 kB | Preview Download |
md5:bca43b102bc8bc9890b1e923860816a2
|
5.8 GB | Preview Download |
md5:b3145a459ebabb52447bdeb2b205da5f
|
709.4 kB | Preview Download |