Published May 31, 2019 | Version v1
Dataset Open

BACH Dataset : Grand Challenge on Breast Cancer Histology images

  • 1. IPATIMUP/i3S
  • 2. INEB/i3S

Description

i3S Annotated Datasets on Digital Pathology

 

WELCOME

In an effort to contribute and push forward the field of Digital Pathology, Ipatimup and INEB, two major research institutions in Portugal, have joined forces in the construction of histology datasets to support grand Challenges on automatic classification of tissue malignancy. The researchers/pathologists responsible for the datasets are:

António Polónia (MD), Ipatimup/i3S

Catarina Eloy (MD, PhD), Ipatimup/i3S

Paulo Aguiar (PhD), INEB/i3S

 

This specific page refers to the Grand Challenge on Breast Cancer Histology images, or BACH Challenge

 

THE BACH CHALLENGE DATASET

ICIAR 2018 - Grand Challenge on Breast Cancer Histology images [Challenge organized by Teresa Araújo, Guilherme Aresta, António Polónia, Catarina Eloy and Paulo Aguiar]

For detailed information visit: https://iciar2018-challenge.grand-challenge.org/home/

 

THIS DATASET IS PUBLICALLY AVAILABLE UNDER A CREATIVE COMMONS CC BY-NC-ND LICENSE (ATTRIBUTION-NONCOMMERCIAL-NODERIVS)
ESSENCIALLY, YOU ARE GRANTED ACCESS TO THE DATASET FOR USE IN YOUR RESEARCH AS LONG AS YOU CREDIT OUR WORK/PUBLICATIONS(*), BUT YOU CANNOT CHANGE THEM IN ANY WAY OR USE THEM COMMERCIALLY

  • (*) Aresta, Guilherme, et al. "BACH: Grand challenge on breast cancer histology images." Medical image analysis (2019).
  • (*) Araújo, Teresa, et al. "Classification of breast cancer histology images using convolutional neural networks." PloS one 12.6 (2017): e0177544.
  • (*) Fondón, Irene, et al. "Automatic classification of tissue malignancy for breast carcinoma diagnosis." Computers in biology and medicine 96 (2018): 41-51.

 

 

 

 

Files

ICIAR2018_BACH_Challenge.zip

Files (13.4 GB)

Name Size Download all
md5:8ae1801334aa943c44627c1eef3631b2
10.4 GB Preview Download
md5:193704e3411f75bdd98d5cb93a2e56c8
3.0 GB Preview Download
md5:994d18b95da6de14ea964fc1c17593a1
746 Bytes Preview Download
md5:223cde3b4de5ff3fe060bec83a294120
1.8 kB Preview Download

Additional details

Related works

Is documented by
Journal article: 10.1016/j.media.2019.05.010 (DOI)