Published March 9, 2022 | Version 1.0.0
Dataset Open

Hyperspectral imagery Research Products - Toulouse urban area 2015 (French ANR HYEP project)

  • 1. UMR TETIS - CNRS
  • 2. LETG - Université de Rennes
  • 3. ONERA
  • 4. IGN
  • 5. Université Aix Marseille

Contributors

  • 1. UMR TETIS - CNRS

Description

The HYEP project (ANR 14-CE22-0016-01) main goal was to propose a panel of methods and processes designed for hyperspectral imaging, which specificity makes a weighty auxiliary for the monitoring of the elements of the urban area.  The main results of the project can be found at

This Dataset contains five research outputs of this project that were produced on the basis of Hyperspectral data obtained during an acquisition campaign led on Toulouse (France) urban area on July 2015 using Hyspex instrument which provides 408 spectral bands spread over 0.4 – 2.5 μ. Flight altitude lead to 2 m spatial resolution images.

  • Fields_samples.7z:  ESRI Shape Format.  Supervised SVN classification results for 600 urban trees according to a 3 level nomenclature: leaf type (5 classes), family (12 & 19 classes) and species (14 & 27 classes). The number of classes differ for the two latter as they depend on the minimum number of individuals considered (4 and 10 individuals per class respectively). Trees positions have been acquired using differential GPS and are given with centimetric to decimetric precision. A randomly selected subset of these trees has been used to train machine SVM and Random Forest classification algorithms. Those algorithms were applied to hyperspectral images using a number of classes for family (12 & 19 classes) and species (14 & 27 classes) levels defined according to the minimum number of individuals considered during training/validation process (4 and 10 individuals per class, respectively). Global classification precision for several training subsets is given by Brabant et al, 2019 (https://www.mdpi.com/470202) in terms of averaged overall accuracy (AOA) and averaged kappa index of agreement (AKIA).
  • HySPex-2m.7z: full hyperspectral VNIR-SWIR ENVI standard image obtained from the coregistration of both VNIR and SWIR ones through a signal aggregation process that allowed to obtain a synthetic VNIR 1.6 m spatial resolution image, with pixels exactly corresponding to natif SWIR image ones. First, a spatially resampled 1.6 m VNIR image was built, where output pixel values were calculated as the average of the VNIR 0.8 m pixel values that spatially contribute to it. Then, ground control points (GCP) were selected over both images and SWIR one was tied to the VNIR 1.6 m image using a bilinear resampling method using ENVI tool. This lead to a 1.6 m spatial resolution full VNIR-SWIR image.
  • HYPXIM-4m.7z,  HYPXIM-8m.7z,  Sentinel2-10m.7z: hyperspectral ENVI standard simulated images. Spatial and spectral configurations generated correspond to ESA SENTINEL-2 instrument that was lunched on 2015, and HYPXIM sensor which was under study at that time. 

Files

Files (981.0 MB)

Name Size Download all
md5:0d61e983d79429b137e6b56e1d40a1e8
16.2 kB Download
md5:bff00d4730653724d7586379392f7ef5
100.5 MB Download
md5:c9c8751192ce65c19945b33c7e317e6f
24.3 MB Download
md5:6ba8b1f0d63b95283a80c85559311830
855.2 MB Download
md5:5bdacc02e34e70ceb8497f81523ca111
1.0 MB Download

Additional details

References

  • G. Roussel, C. Weber, X. Briottet and X. Ceamanos, "Comparison of two atmospheric correction methods for the classification of spaceborne urban hyperspectral data depending on the spatial resolution", International Journal of Remote Sensing, vol. 39(5), pp. 1593-1614, 2018. DOI: 10.1080/01431161.2017.1410247
  • F. Z. Benhalouche, M. S. Karoui, Y. Deville, I. Boukerch, A. Ouamri, ``Multi-sharpening hyperspectral remote sensing data by multiplicative joint-criterion linear-quadratic nonnegative matrix factorization'', Proceedings of the 2017 IEEE International Workshop on Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM 2017), May 24-26, 2017, Donostia - San Sebastian. DOI: 10.1109/ECMSM.2017.7945884
  • Gintautas Mozgeris, Vytaut ̇e Juodkien ̇e, Donatas Jonikaviˇcius, Lina Straigyt ̇e, S ́ebastien Gadal, and Walid Ouerghemmi. Ultra-Light Aircraft-Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment. Remote Sensing, 10(10), October 2018. hal-amu.archives-ouvertes.fr/hal-01903469
  • Christiane Weber, Thomas Houet, S ́ebastien Gadal, Rahim Aguejdad, Grzegorz Skupinski, Yannick Deville, Jocelyn Chanussot, Mauro Dalla Mura, Xavier Briottet, Cl ́ement Mallet, and Arnaud Le Bris. HYEP HYperspectral imagery for Environmental urban Planning : principaux résultats. In 7ème colloque scientifique du groupe SFPT-GH, Toulouse, France, July 2019. ONERA - SFTP. Christiane Weber, Rahim Aguejdad, Xavier Briottet, Josselin Aval, Sophie Fabre, Jean Demuynck, Emmanuel Zenou, Yannick Deville, Moussa Sofiane Karoui, Fatima Zohra, Sébastien Gadal, Walid Ouerghemmi, Clément Mallet, Arnaud Le Bris, and Nesrine CHEHATA. Hyperspectral Imagery for Environmental Urban Planning. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2018, pages 1628–1631, Valencia, Spain, July 2018a. IEEE. hal.archives-ouvertes.fr/hal-02281003
  • Christiane Weber, Rahim Aguejdad, X Briottet, J Avala, S. Fabre, J Demuynck, E Zenou, Y. Deville, M. Karoui, F Z Benhalouche, S Gadal, W Ourghemmi, C. Mallet, A. Le Bris, and N. Chehata. HYPERSPECTRAL IMAGERY FOR ENVIRONMENTAL URBAN PLANNING. In IGARSS 2018, Valencia, Spain, 2018b. hal-amu.archives-ouvertes.fr/hal-01852844
  • W. Ouerghemmi, A. Le Bris, Nesrine CHEHATA, and Clément Mallet. A two-step decision fusion strategy: application to hyperspectral and multispectral images for urban classification. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume XLII-1/W1, pages 167–174, Hanover, Germany, May 2017. Copernicus GmbH (Copernicus Publications). doi.org/10.5194/isprs-archives-XLII-1-W1-167-201
  • Christiane Weber, Sébastien GADAL, Xavier Briottet, and Clément Mallet. Apport de l'imagerie hyperspectrale pour la planification urbaine. In Karine Emsellem, Diego Moreno, Christine Voiron-Canicio, and Didier Josselin, editors, SAGEO 2016 - Spatial Analysis and Geomatics, Actes de la conférence SAGEO'2016 - Spatial Analysis and GEOmatics, pages 454–462, Nice, France, December 2016. hal.inria.fr/hal-02384455
  • Gintautas Mozgeris, S ́ebastien Gadal, Donatas Jonikaviˇcius, Lina Straigyte, Walid Ouerghemmi, and Vytaut ̇e Juodkiene. Hyperspectral and color-infrared imaging from ultra-light aircraft: Potential to recognize tree species in urban environments. In University of California Los Angeles, editor, 8th Workshop in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pages 542–546, Los Angeles, United States, August 2016. hal-amu.archives-ouvertes.fr/hal-01359643
  • Alexandre Hervieu, Arnaud Le Bris, and Cl ́ement Mallet. Fusion of hyperspectral and VHR multispectral image classifications in urban α–areas. In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, volume III-3, pages 457–464, Prague, Czech Republic, July 2016. hal.inria.fr/hal-02384458
  • Christiane Weber, Thomas Houet, Sebastien GADAL, Rahim Aguejdad, Grzegorz Skupinski, Aziz Serradj, Yannick Deville, Jocelyn Chanussot, Mauro Dalla Mura, Xavier Briottet, Clément Mallet, and Arnaud Le Bris. ANR HYEP ANR 14-CE22-0016-01Hyperspectral imagery for Environmental urban Planning HyepProgramme Mobilité et systèmes urbains 2014. Research report, CNRS UMR TETIS, ESPACE, LETG ; ONERA ; GIPSA-lab ; IRAP ; IGN, October 2018c. hal.archives-ouvertes.fr/hal-01888126
  • Josselin Aval, Sophie Fabre, Emmanuel Zenou, David Sheeren, Mathieu Fauvel & Xavier Briottet (2019) Object-based fusion for urban tree species classification from hyperspectral, panchromatic and nDSM data, International Journal of Remote Sensing, 40:14, 5339-5365, DOI: 10.1080/01431161.2019.1579937