File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published April 23, 2020 | Version v1
Conference paper Open

EPR experiment for a broadband quantum noise reduction in gravitational wave detectors

  • 1. INFN sez. di Genova
  • 2. APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris
  • 3. INFN, Sezione di Perugia
  • 4. Università di Padova, Dipartimento di Fisica and INFN, Sezione di Padova
  • 5. INFN, Sezione di Padova
  • 6. INFN sez. di Genova and Dipartimento di Fisica, Università degli Studi di Genova
  • 7. Università di Napoli Federico II and INFN, Sezione di Napoli
  • 8. Università di Roma La Sapienza and INFN, Sezione di Roma
  • 9. Università di Roma Tor Vergata and INFN, Sezione di Roma Tor Vergata and Gran Sasso Science Institute (GSSI)
  • 10. INFN, Sezione di Pisa
  • 11. Gran Sasso Science Institute (GSSI)
  • 12. INFN, Sezione di Roma Tor Vergata and Gran Sasso Science Institute (GSSI)
  • 13. INFN, Sezione di Roma
  • 14. APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu
  • 15. INFN, Sezione di Roma Tor Vergata
  • 16. Nikhef and Institute for High-Energy Physics, University of Amsterdam

Description

Squeezed states of light contribute to the reduction of quantum noise in gravitational-wave interferometers. This result, predicted by Caves in 1981, has been demonstrated by the main gravitational-wave detectors. The injection of phase-squeezed light only decreases quantum shot noise fluctuations, improving the detector sensitivity in high-frequency band; the corresponding anti-squeezing, indeed, induces radiation pressure noise, increasing quantum noise in low-frequency band. This becomes important for near detector generation, where current low frequency noises, that cover the radiation pressure noise, will be reduced. To face this problem, the use of frequency dependent squeezing, obtained using a long external filter cavity, is planned. An alternative method,
based on EPR experiment, can be used for the same purpose. It has the advantage to avoid further complex infrastructures required for the filter cavity. We propose a table-top experiment to test the broadband quantum noise reduction that can be obtained injecting entangled beams through the interferometer dark port. The conceptual design and the possible implementation in a small-scale suspended interferometer will be presented.

Files

Sequino_GRASS2019_proceedings.pdf

Files (367.3 kB)

Name Size Download all
md5:d0052027009e0910dbd422e63ff34b4f
367.3 kB Preview Download