Social B(eye)as: Human andMachine Descriptions of People Images
- 1. Research Centre on Interactive Media, Smart Systems and Emerging Technologies (Nicosia, CYPRUS)
- 2. Research Centre on Interactive Media, Smart Systems and Emerging Technologies (Nicosia, CYPRUS) and Cyprus Center for Algorithmic Transparency, Open University of Cyprus (Latsia, CYPRUS)
Description
Image analysis algorithms have become an indispensable tool in our information ecosystem, facilitating new forms of visual communication and information sharing. At the same time, they enable large-scale sociotechnical research which would otherwise be difficult to carry out. However, their outputs may exhibit social bias, especially when analyzing people images. Since
most algorithms are proprietary and opaque, we propose a method of auditing their outputs for social biases. To be able to compare how algorithms interpret a controlled set of people images, we collected descriptions across six image tagging APIs. In order to compare these results to human behavior, we also collected descriptions on the same images from crowdworkers in two anglophone regions. While the APIs do not output explicitly offensive descriptions, as humans do, future work should consider if and how they reinforce social inequalities in implicit ways. Beyond computer vision auditing, the dataset of human- and machine-produced
tags, and the typology of tags, can be used to explore a range of research questions related to both algorithmic
and human behaviors.
Notes
Files
ICWSM_dataset.pdf
Files
(975.9 kB)
Name | Size | Download all |
---|---|---|
md5:8981d8c855a19105e5c55369bcf8c930
|
975.9 kB | Preview Download |