SM2RAIN-ASCAT (2007-2021) global daily satellite rainfall including aggregated values and trend parameters as 10km resolution GeoTIFFs
Description
This is a GeoTIFF version of the SM2RAIN-ASCAT (2007-2021): global daily satellite rainfall from ASCAT soil moisture data set v1.1 (Brocca et al. 2019). Conversion steps are available here. Few important notes:
- Daily values are stored as integers, whereas in the NetCDF the dataset is rounded to one decimal place.
- The NetCDF has also a Quality Flag for a better and more informed use of the data (here omitted).
- P05, P50 and P95 indicate quantiles derived per pixel.
Includes also long-term trends (trend.logit.ols) which was produced by fitting regression models to de-seasonalized time-series as explained in this python tutorial. Basically models are fitted for each pixel and the model parameters are saved as images.
Monthly averages and s.d. of precipitation are available in the files:
- clm_precipitation_sm2rain.*_m_10km_s0..0cm_2007..2021_v1.5.tif = monthly precipitation in mm,
- clm_precipitation_sm2rain.*_sd.10_10km_s0..0cm_2007..2021_v1.5.tif = standard deviation of precipitation in mm * 10 per month (multiplied by 10 so Integers can be used),
Downscaled monthly averages (1 km) are also available (https://doi.org/10.5281/zenodo.1435912).
To cite this data set please refer to the original copy of the data set.
- Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., Schüller, L., Bojkov, B., Wagner, W. (2019). SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst. Sci. Data, 11, 1583–1601. https://doi.org/10.5194/essd-11-1583-2019
Files
00-preview.png
Files
(6.4 GB)
Name | Size | Download all |
---|---|---|
md5:8b5e98455be9debf9fcf2fc0fc86548b
|
727.8 kB | Preview Download |
md5:bc611af5be2e2bf859caa5dc721605bb
|
290.4 MB | Preview Download |
md5:292aeea7ce49d868c0457400135b331c
|
291.9 MB | Preview Download |
md5:34508347657af4ab4965ea97b18f43ff
|
290.8 MB | Preview Download |
md5:c4b032397a51dc9bae16f410c5f7263e
|
296.1 MB | Preview Download |
md5:0f518fc1899a5d8c177668b9678b9ba9
|
296.2 MB | Preview Download |
md5:880055ca4e4ff6d2698fe41a78f12461
|
296.2 MB | Preview Download |
md5:eb0005aed80d270d1cd6e032150af472
|
294.2 MB | Preview Download |
md5:7520dc67ee2e4883adbfcc006fb4e389
|
297.9 MB | Preview Download |
md5:e35c3d00456aca16b820054daafb973e
|
295.1 MB | Preview Download |
md5:c68a65222dc53abea0da34212e8dde84
|
301.5 MB | Preview Download |
md5:6254554c37c32bb09e87e92745e0bbbd
|
302.1 MB | Preview Download |
md5:5ca0b99851369e10caae97042971d111
|
302.3 MB | Preview Download |
md5:25646cd5b284ba2ec501e49ca2135101
|
304.8 MB | Preview Download |
md5:6dd7e60fa65e6733f0fd6d081afb1c98
|
308.9 MB | Preview Download |
md5:fc97d4502a546de8cc456a9c80c4e03e
|
309.3 MB | Preview Download |
md5:7427b21153a64645fa26678d6023f633
|
190.8 MB | Preview Download |
md5:802ce536cf68fbaa96ffea353b7d5112
|
94.5 MB | Preview Download |
md5:2d833b853eb465d1d22e66802a4d802d
|
184.3 MB | Preview Download |
md5:19aa07d1acef61a728d2f2bc535eedc0
|
265.8 MB | Preview Download |
md5:6f358c127d37a3f3f455400806e8e2c3
|
192.1 MB | Preview Download |
md5:ed5bc2f7096b208c07b7f841fe621ec1
|
411.1 MB | Preview Download |
md5:585b7ab2740601bb62cda62405f00cb2
|
26.8 MB | Preview Download |
md5:47118133ab486aaa1872966c04b056cc
|
24.7 MB | Preview Download |
md5:fc855f409f839f193d252dd2779767ab
|
26.7 MB | Preview Download |
md5:d484fa780034daffcf25c87a1dd57012
|
28.8 MB | Preview Download |
md5:0823934c0fec49f89273e5c86eadc598
|
23.6 MB | Preview Download |
md5:1dd1b07134b94cffc8410930e6e7d8bc
|
23.8 MB | Preview Download |
md5:0749df6acb533002469360d0284b4532
|
463.7 MB | Preview Download |
md5:cc7f05825da7f2bc8e845ae667939c22
|
157.8 kB | Preview Download |
md5:79e505463be7a9018e66fbd6d5207c34
|
92.3 kB | Preview Download |
Additional details
Related works
- Is supplemented by
- Dataset: 10.5281/zenodo.1435912 (DOI)
Funding
References
- Ciabatta, L., Massari, C., Brocca, L., Gruber, A., Reimer, C., Hahn, S., Paulik, C., Dorigo, W., Kidd, R., and Wagner, W.: SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture, Earth Syst. Sci. Data, 10, 267-280, https://doi.org/10.5194/essd-10-267-2018, 2018.
- Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., Schüller, L., Bojkov, B., Wagner, W. (2019). SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst. Sci. Data, 11, 1583–1601.