Published September 10, 2019 | Version 1.0
Dataset Open

THOR - people tracks

Description

THÖR is a dataset with human motion trajectory and eye gaze data collected in an indoor environment with accurate ground truth for the position, head orientation, gaze direction, social grouping and goals. THÖR contains sensor data collected by a 3D lidar sensor and involves a mobile robot navigating the space. In comparison to other, our dataset has a larger variety in human motion behaviour, is less noisy, and contains annotations at higher frequencies.

The dataset includes 13 separate recordings in 3 variations:

  • ``One obstacle" - features one obstacle in the environment and no robot
  • ``Moving robot" - features one obstacle in the environment and the moving robot
  • ``Three obstacles" - features three obstacles in the environment and no robot

THOR - people tracks is the part of THÖR data set containing ground truth position of people in the environment, including information about head orientation.  The data are available in three formats:

  1. mat - Matlab binary file
  2. TSV - text file
  3. bag - ROS bag file

MAT files

  • File - [char] Path to original QTM file
  • Timestamp - [string] Date and time of the startof the data collection
  • Start Fram - [char] 1
  • Frames - [double] Number of frames in the file
  • FrameRate - [double] Number of frames per second
  • Events - [struct] 0
  • Trajectories - [struct] 3D postion of observed reflective markers
    • Labeled  - [struct] Markers belonging to the tracked agents:
      • Count - [double] Number of tracked markers
      • Labels - [cell] List of marker labels
      • Data - [double] Array of dimension {Count}x4x{Frames}, contains the 3D position of each marker and residue
  • RigidBodies - [struct] 6D pose of the helmet, corresponds to head poistion and orientation:
    • Bodies - [double] Number of tracked bodies
    • Name  - [cell] Bodies Names
    • Positions - [double] Array of dimension {Bodies}x3x{Frames} contains the position of the centre of the mass of the markers defining the rigid body
    • Rotations - [double] Array of dimension {Bodies}x9x{Frames} contains rotation matrix describing the orientation of the rigid body
    • RPYs  - [double] Array of dimension {Bodies}x3x{Frames} contains orientation of the rigid body described as RPY angles
    • Residual - [double] Array of dimension {Bodies}x1x{Frames} contains residual for each rigid body

TSV files

  1. 3D data
    1. File Header
      • NO_OF_FRAMES  - number of frames in the file  
      • NO_OF_CAMERAS - number of cameras tracking makers
      • NO_OF_MARKERS - number of tracked markers
      • FREQUENCY - tracking frequency [Hz]   
      • NO_OF_ANALOG - number of analog inputs   
      • ANALOG_FREQUENCY - frequency of analog input   
      • DESCRIPTION -  --
      • TIME_STAMP - the beginning of the data recording
      • DATA_INCLUDED - the type of data included
      • MARKER_NAMES - names of tracked makers
    2. Column names
      • Frame - frame ID
      • Time - frame timestamp
      • [marker name] [C] - coordinate of a [marker name] along [C] axis
  2. 6D data
    1. File Header
      • NO_OF_FRAMES  - number of frames in the file  
      • NO_OF_CAMERAS - number of cameras tracking makers
      • NO_OF_MARKERS - number of tracked markers
      • FREQUENCY - tracking frequency [Hz]   
      • NO_OF_ANALOG - number of analog inputs   
      • ANALOG_FREQUENCY - frequency of analog input   
      • DESCRIPTION -  --
      • TIME_STAMP - the beginning of the data recording
      • DATA_INCLUDED - the type of data included
      • BODY_NAMES - names of tracked rigid bodies
    2. Colum Names
      • Frame - frame ID
      • Time - frame timestamp
      • The columns are grouped according to the rigid body. Each group starts with the name of the rigid body and then is followed by the position of the centre of the mas and the orientation expressed as RPY angles and rotation matrix

Reference:

For more details check project website thor.oru.se or check our publications:

@article{thorDataset2019,
title={TH\"OR: Human-Robot Indoor Navigation Experiment
and Accurate Motion Trajectories Dataset},
author={Andrey Rudenko and Tomasz P. Kucner and
Chittaranjan S. Swaminathan and Ravi T. Chadalavada
and Kai O. Arras and Achim J. Lilienthal},
journal={arXiv preprint arXiv:1909.04403},
year={2019}
}

 

Files

Files (2.6 GB)

Name Size Download all
md5:942ae0ef5051406e128099a4cb94032f
19.8 MB Download
md5:53ffd6fd55021cb682fb422721bdde60
17.4 MB Download
md5:408941d0110816ad1ca2b443f194a6b5
17.8 MB Download
md5:c924eabb786035545876ac4d271bb549
24.2 MB Download
md5:e2e3592793af689ef88fccb869f97a41
36.5 MB Download
md5:77f117313dd30a4113f2d8137bc69cd0
24.6 MB Download
md5:2e3897be182dab7bc9e430e41f71ebf4
24.6 MB Download
md5:0bf68aa5c364c04986d3fdf3c047ff34
24.3 MB Download
md5:3eb451bbea32afd324ef6465bd409ab7
21.1 MB Download
md5:802dce08b9eb362d6e5fd547fbd5f7cb
106.7 MB Download
md5:194c74b1767a1741c677ce3b86f22c7a
34.8 MB Download
md5:07d27e615760b52a44b8e6f29f7a843a
50.4 MB Download
md5:7b32cfafb052f184fb226d7634002084
80.9 MB Download
md5:85c3fe1c57c7a9b969d564731b626672
27.0 MB Download
md5:917f578199d6e899b94d04093c3658c4
39.1 MB Download
md5:0107e0683151ad2ab44c68d9065c6d7d
86.8 MB Download
md5:1865a74593b55d5e6dd06d010b3b598c
28.8 MB Download
md5:498b11b242877a11be0ee6c68f0b676c
41.7 MB Download
md5:a03fa06cac84deb86621a40c9e6e6426
99.5 MB Download
md5:a7a4c6fd66bdb979dda602398eb431ab
34.1 MB Download
md5:46594cfc5a5067de30d99804c352fb81
49.2 MB Download
md5:7f79875902de930c794727825c557b69
93.3 MB Download
md5:4ad9a8459735f154e967231cc3bc3ef1
33.1 MB Download
md5:c8ca6ab922036601e95de083d4fa387b
43.6 MB Download
md5:8997c06f57632b8b5f1c34f53982c12f
85.9 MB Download
md5:75c14bfda4c2dbf9108e0610b51fbca4
30.6 MB Download
md5:17196097564662ca2b72663b8d0a8a3e
40.1 MB Download
md5:2e79fda8287a7b5f6b2f841a50fe2d48
95.0 MB Download
md5:10700da6296cde9a7c314e98da3203cc
33.8 MB Download
md5:c8e5bb88c35dc1bb5a6c573b21bf2326
44.4 MB Download
md5:597bc305cd0c15a930a7f6980ba94a64
92.5 MB Download
md5:2e2b9cc92990ac79e63806796547ff04
33.0 MB Download
md5:4df7fcd3bf23c1ce7886d1b2beb0b169
43.6 MB Download
md5:d6793dd1d2dbb7cfaf4ecf41b4870d54
164.3 MB Download
md5:aa75966a3b9f4702a30c81dc9c2f2e04
58.3 MB Download
md5:7781a25bfcce06cbefe72110c024c25b
76.5 MB Download
md5:021c2995c2700be281378b65ad9f9fcd
104.4 MB Download
md5:e7a8da85deb7fb709e45a2f9417b0912
37.4 MB Download
md5:127632238e26882c62a394e16c6d7c45
49.1 MB Download
md5:5c3318d97ad433b64f6ac2042f88f999
96.4 MB Download
md5:f8ec8701fbae4b14634b8d3c5c2095cd
35.4 MB Download
md5:a5e84ec071971dd451f48b7a9af66b48
46.0 MB Download
md5:1534734102cfa20c4e721cc8fe1a54d4
97.3 MB Download
md5:1433f2a8c350f328f71b40ccff46b8ef
36.5 MB Download
md5:cfe42dc2e4373ae407f8a7c474172f6c
44.5 MB Download
md5:8a212b86f3a7b443b7ce7667a590d422
92.0 MB Download
md5:d043e843428f19e9c814d55cacc8ab90
33.5 MB Download
md5:3015b782f23228a286102a78ee2f7710
43.0 MB Download

Additional details

Related works

Is supplement to
arXiv:1909.04403 (arXiv)

Funding

ILIAD – Intra-Logistics with Integrated Automatic Deployment: safe and scalable fleets in shared spaces 732737
European Commission