VISTA: A visual analytics platform for semantic annotation of trajectories
- 1. Dalhousie University, Canada
- 2. ISTI-CNR, Italy
Description
Most of the trajectory datasets only record the spatio-temporal position of the moving object, thus lacking semantics and this is due to the fact that this information mainly depends on the domain expert labeling, a time-consuming and complex process. This paper is a contribution in facilitating and supporting the manual annotation of trajectory data thanks to a visual-analytics- based platform named VISTA. VISTA is designed to assist the user in the trajectory annotation process in a multi-role user en- vironment. A session manager creates a tagging session selecting the trajectory data and the semantic contextual information. The VISTA platform also supports the creation of several features that will assist the tagging users in identifying the trajectory segments that will be annotated. A distinctive feature of VISTA is the visual analytics functionalities that support the users in exploring and processing the trajectory data, the associated fea- tures and the semantic information for a proper comprehension of how to properly label trajectories.
Files
EDBT19_paper_274.pdf
Files
(641.9 kB)
Name | Size | Download all |
---|---|---|
md5:5f05d1406c49dce18e025447408744f1
|
641.9 kB | Preview Download |
Additional details
Related works
- Is cited by
- 10.5441/002/edbt.2019.58 (DOI)