There is a newer version of the record available.

Published March 4, 2019 | Version v1
Dataset Open

Analyzing the importance of spatial autocorrelation in hyperparameter tuning and performance estimation of machine-learning algorithms for spatial data.

  • 1. Friedrich-Schiller-University Jena
  • 2. NEIKER Tecnalia
  • 3. TU Dortmund

Description

This repository will contain the research compendium of our work on comparing algorithms across different resampling settings.

Files

atlas-climatico.zip

Files (5.3 GB)

Name Size Download all
md5:15d998deb8e419f347059a527c7035a5
4.0 GB Preview Download
md5:f4b54c461cf4a1f3f3ddcc8e63896d6b
934.4 MB Preview Download
md5:45847d43dbaf34717efa2ed8c1b44113
536.6 kB Download
md5:1b989e12b54ffcfcb9f9fbe41348c72c
3.9 MB Preview Download
md5:063db5594a9d534cddc09bf47b9d04dd
221.2 kB Download
md5:e40e359352090b56f3116de286b3324e
23.8 MB Preview Download
md5:b6e7828a37927ce03771760bcaa9f12a
392.1 MB Preview Download
md5:8b591041e0b04d1d3334ac0bfd44cc7e
127.0 kB Download

Additional details

Related works

Is new version of
https://arxiv.org/abs/1803.11266 (URL)