Published October 2, 2018 | Version v1
Conference paper Open

The role of future information in control system design for shipboard power systems

  • 1. United States Naval Academy
  • 2. University of Kentucky

Description

Both naval and commercial ships are incorporating new power and energy system technologies to improve fuel economy and performance while servicing high power pulsed loads. These assets can be best utilized with load demand forecasting and/or prediction, especially when considering limits on generator ramp rates, distribution lines, and energy storage capacity. Obtaining future load demand data and designing a controller to accommodate it can be challenging, but with potentially large payoff. However, this information is not useful in all cases. This paper develops a method to quantify the potential value of future information depending on the specific power system characteristics. This quantitative approach aids designers in deciding how and when to deploy future forecasting in controller design, and provides insight into the potential benefits of these more complex controllers. To quantify this trade off, two optimization-based control methods are developed. One uses only current information, while the other has an exact forecast of the future. As examples, the method is applied to a notional naval ship and drill platform service vessel with representative power and energy system architectures under indicative operational load demands. 

Files

ISCSS 2018 Paper 014 Opila FINAL.pdf

Files (1.0 MB)

Name Size Download all
md5:bd844118b0a7fcf4e054eb5f07a5e4e2
1.0 MB Preview Download

Additional details

References

  • Anvari-Moghaddam, A., Dragicevic, T., Meng, L., Sun, B., Guerrero, J.M., 2016. Optimal planning and operation management of a ship electrical power system with energy storage system, in: IECON2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 2095–2099. doi:10.1109/IECON.2016.7793272.
  • Banaei, M.R., Alizadeh, R., 2016. Simulation-based modeling and power management of all-electric ships based on renewable energy generation using model predictive control strategy. IEEE Intelligent Transportation Systems Magazine 8, 90–103. doi:10.1109/MITS.2016.2533960.
  • Bernardes, J., Stumborg, M., Jean, T., 2003. Analysis of a capacitor-based pulsed-power system for driving long-range electromagnetic guns 39, 486–490. URL:http://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=1179873, doi:10.1109/TMAG.2002.806380.
  • Chan, R.R., Sudhoff, S.D., Lee, Y., Zivi, E.L., 2009. A linear programming approach to shipboard electrical system modeling, in: Proc. IEEE Electric Ship Technologies Symp, pp. 261–269. doi:10.1109/ESTS.2009. 4906524.
  • Chan, R.R., Sudhoff, S.D., Zivi, E.L., 2011. An approach to optimally allocate energy storage in naval electric ships,in: Proc.IEEE Electric Ship Technologies Symp, pp.402–405. doi:10.1109/ESTS.2011.5770905.
  • Cramer, A.M., Chen, H., Zivi, E.L., 2013. Shipboard electrical system modeling for early-stage design space exploration, in: Proc. IEEE Electric Ship Technologies Symp. (ESTS), pp. 128–134. doi:10.1109/ESTS. 2013.6523723.
  • Cramer, A.M., Liu, X., Zhang, Y., Stevens, J.D., Zivi, E.L., 2015. Early-stage shipboard power system simulation of operational vignettes for dependability assessment, in: Proc.IEEE Electric Ship Technologies Symp.(ESTS), pp. 382–387. doi:10.1109/ESTS.2015.7157923.
  • Gonsoulin, D.E., Vu, T.V., Diaz, F., Vahedi, H., Perkins, D., Edrington, C.S., 2017. Coordinating multiple energy storages using MPC for ship power systems, in: Proc. IEEE Electric Ship Technologies Symp. (ESTS), pp. 551–556. doi:10.1109/ESTS.2017.8069336.
  • Haseltalab, A., Negenborn, R.R., 2017. Predictive on-board power management for all-electric ships with DC distribution architecture, in: Proc. OCEANS 2017 - Aberdeen, pp. 1–8. doi:10.1109/OCEANSE.2017. 8084694.
  • Hossain, M.R., Ginn, H.L., 2017. Real-time distributed coordination of power electronic converters in a DC shipboard distribution system. IEEE Transactions on Energy Conversion 32, 770–778. doi:10.1109/TEC. 2017.2685593.
  • Hou,J.,Sun,J.,Hofmann,H.F.,2018. Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: Design and analysis. IEEE Journal of Oceanic Engineering 43, 93–107. doi:10.1109/JOE. 2017.2674878.
  • Im, W.S., Wang, C., Tan, L., Liu, W., Liu, L., 2016. Cooperative controls for pulsed power load accommodation in a shipboard power system. IEEE Transactions on Power Systems 31, 5181–5189. doi:10.1109/TPWRS. 2016.2538323.
  • Kankanala, P., Srivastava, S.C., Srivastava, A.K., Schulz, N.N., 2012. Optimal control of voltage and power in a multi-zonal mvdc shipboard power system. IEEE Transactions on Power Systems 27, 642–650. doi:10.1109/ TPWRS.2011.2178274.
  • Monti, A., Boroyevich, D., Cartes, D., Dougal, R., Ginn, H., Monnat, G., Pekarek, S., Ponci, F.,Santi, E., Sudhoff, S., Schulz, N., Shutt, W.,Wang, F., 2005. Ship power system control: a technology assessment, in: Electric Ship Technologies Symposium, 2005 IEEE, pp. 292–297. URL: http://ieeexplore.ieee.org/stamp/ stamp.jsp?arnumber=1524691, doi:10.1109/ESTS.2005.1524691.
  • Oh, E., Opila, D.F., Stevens, J., Zivi, E., Cramer, A., 2017. Early stage design evaluation of shipboard power systems using multi-period powerflow, in: Proc.IEEE Electric Ship Technologies Symp.(ESTS),pp.225–231. doi:10.1109/ESTS.2017.8069285.
  • Paran, S., Vu, T.V., Mezyani, T.E., Edrington, C.S., 2015. Mpc-based power management in the shipboard power system, in: 2015 IEEE Electric Ship Technologies Symposium (ESTS), pp. 14–18. doi:10.1109/ESTS. 2015.7157855.
  • Park, H., Sun, J., Pekarek, S., Stone, P., Opila, D., Meyer, R., Kolmanovsky, I., DeCarlo, R., 2015. Real-time model predictive control for shipboard power management using the IPA-SQP approach. IEEE Transactions on Control Systems Technology 23, 2129–2143. doi:10.1109/TCST.2015.2402233.
  • Stevens, J.D., Opila, D.F., Cramer, A.M., Zivi, E.L., 2015. Operational vignette-based electric warship load demand,in: Proc.IEEE Electric Ship Technologies Symp.(ESTS),pp.213–218. doi:10.1109/ESTS.2015. 7157890.
  • Stone, P., Opila, D.F., Park, H., Sun, J., Pekarek, S., DeCarlo, R., Westervelt, E., Brooks, J., Seenumani, G., 2015. Shipboard power management using constrained nonlinear model predictive control, in: Proc. IEEE Electric Ship Technologies Symp. (ESTS), pp. 1–7. doi:10.1109/ESTS.2015.7157853.
  • Vu, T.V., Gonsoulin, D., Diaz, F., Edrington, C.S., El-Mezyani, T., 2017. Predictive control for energy management in ship power systems under high-power ramp rate loads. IEEE Transactions on Energy Conversion 32,788–797. doi:10.1109/TEC.2017.2692058.
  • Vu, T.V., Paran, S., Diaz, F., Meyzani, T.E., Edrington, C.S., 2015. Model predictive control for power control in islanded dc microgrids, in: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, pp. 001610–001615. doi:10.1109/IECON.2015.7392331.
  • Zhu, W., Wang, W., Fu, L., 2017. System-level dynamic power management for islanded DC microgrid with pulse load, in: Proc. IEEE Int. Conf. Mechatronics and Automation (ICMA), pp. 1204–1209. doi:10.1109/ICMA. 2017.8015988.
  • Zivi, E., 2002. Integrated shipboard power and automation control challenge problem, in: Power Engineering Society Summer Meeting, 2002 IEEE, pp. 325–330. URL: http://ieeexplore.ieee.org/stamp/ stamp.jsp?arnumber=1043243, doi:10.1109/PESS.2002.1043243.
  • Zohrabi, N., Abdelwahed, S., 2017. On the application of distributed control structure for medium-voltage DC shipboard power system, in: Proc. IEEE Conf. Control Technology and Applications (CCTA), pp. 1201–1206. doi:10.1109/CCTA.2017.8062622.
  • Zohrabi, N., Abdelwahed, S., Shi, J., 2017. Reconfiguration of mvdc shipboard power systems: A model predictive control approach, in: Proc. IEEE Electric Ship Technologies Symp. (ESTS), pp. 253–258. doi:10.1109/ ESTS.2017.8069290.