Published January 8, 2019 | Version v1
Technical note Open

Data Quality Concept

Description

One of the requirements for a future reliability and availability information system is to ensure adequate quality of the gathered data. This document presents the state-of-the art in reliability data quality estimation. The document describes what qualifiers and control
processes should be used to assess and ensure the data quality in the Accelerator Reliability Information System (ARIS).

Files

ARIES__AIT_IO2.1_V1.0.pdf

Files (300.9 kB)

Name Size Download all
md5:ed171bd50bdcd41186d3e939d32de7eb
300.9 kB Preview Download

Additional details

Funding

European Commission
ARIES – Accelerator Research and Innovation for European Science and Society 730871

References

  • A. Preinerstorfer, H. Humer, P. Böhm, T. Gruber, A. Niemi and J. Gutleber, Bibliography and state of the art of reliability information systems, ARIES note, (Zenodo, 2018). https://doi.org/10.5281/zenodo.1292068
  • A. Preinerstorfer, H. Humer, P. Böhm, T. Gruber, A. Niemi and J. Gutleber, Information system use cases and use context of an open reliability information system. ARIES note, (Zenodo, 2018). http://doi.org/10.5281/zenodo.1317768
  • International Organization for Standardization, Petroleum, petrochemical and natural gas industries - Collection and exchange of reliability and maintenance data for equipment, International standard ISO 14224:2016, 2016.
  • M. Hodkiewicz, P. Kelly, J. Sikorska and L. Gouws, A Framework to Assess Data Quality for Reliability Variables, in Engineering Asset Management - Proceedings of the 1st World Congress of Asset Management, pp. 137-147 (Springer, 2008). https://doi.org/10.1007/978-1-84628-814-2_15
  • M. Hodkiewicz and N. Montgomery, Data fitness for purpose: assessing the quality of industrial data for use in mathematical models, in 8th IMA International Conference on Modelling in Industrial Maintenance and Reliability (MIMAR), (2014). https://www.researchgate.net/publication/295010797_Data_fitness_for_purpose_assessing_the_quality_of_industrial_data_for_use_in_mathematical_models
  • M. Aljumaili, Data Quality Assessment: Applied in Maintenance, Ph.D. thesis, (Luleå University of Technology, 2016)
  • M. Madhikermi, S. Kubler, J. Robert, A. Buda and K. Främling, Data quality assessment of maintenance reporting procedures, Expert Syst. Appli., Vol. 63, pp. 145-164, 2016. https://doi.org/10.1016/j.eswa.2016.06.043
  • M. Rantala, Data quality analysis in industrial maintenance: Theory vs. Reality, Master's thesis, (Lappeenranta University of Technology, 2016).
  • T. Pinna, J. Izquierdo, M. T. Porfiri, J. Dies, Fusion component failure rate database (FCFR-DB), Fusion Eng. Des, Vol. 81, pp. 1391 – 1395, 2006. https://doi.org/10.1016/j.fusengdes.2005.05.011
  • International Organization for Standardization, Nuclear power plants - Reliability data exchange - General guidelines, International standard ISO 6527, 1982.
  • OREDA participants, OREDA Offshore and onshore reliability data handbook, Volume 1, 6th edition, 2015.