Published December 24, 2018 | Version v0.2
Dataset Open

Silt content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution

  • 1. EnvirometriX Ltd

Description

Silt content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Based on machine learning predictions from global compilation of soil profiles and samples. Processing steps are described in detail here. Antarctica is not included.

To access and visualize maps use:  OpenLandMap.org

If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:

 

All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:

  • sol = theme: soil,
  • silt.wfraction = variable: silt weight fraction,
  • usda.3a1a1a = determination method: laboratory method code,
  • m = mean value,
  • 250m = spatial resolution / block support: 250 m,
  • b10..10cm = vertical reference: 10 cm depth below surface,
  • 1950..2017 = time reference: period 1950-2017,
  • v0.2 = version number: 0.2,

Files

sol_silt.wfraction_usda.3a1a1a_m.png

Files (24.5 GB)

Name Size Download all
md5:9dd580f23425be48de5439693fe65f0a
1.2 MB Preview Download
md5:f69a36046485d87d0b9f05f18c58422c
2.0 GB Preview Download
md5:f9c99b27908fa329ca53eb560c92299c
2.0 GB Preview Download
md5:e7f73fe3e5342e6aa7c9bb9bf328b3d7
2.0 GB Preview Download
md5:459c5b967c910285558f1754e55a5df9
2.0 GB Preview Download
md5:c7eeda00755ebae00b6a5ab4fd4af7d7
2.0 GB Preview Download
md5:6ab9149d503db7b9ebc0a6c3c55508d7
2.0 GB Preview Download
md5:fb9298b2c021810e2dce96fef18c5fa7
2.0 GB Preview Download
md5:ad41cdb0d25f4d88d03e67932b3c4dbf
2.0 GB Preview Download
md5:1160e45392a7bb1a01dbf748258b7478
2.0 GB Preview Download
md5:a55a9fc86057868f34ed432973817714
2.1 GB Preview Download
md5:1c06807c654a1ff40646fdfc6f3989ec
2.0 GB Preview Download
md5:8e1dee6a239502781c11808fbcd524f3
2.0 GB Preview Download

Additional details

References

  • Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.