Published December 24, 2018 | Version v0.2
Dataset Open

Soil bulk density (fine earth) 10 x kg / m-cubic at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution

  • 1. EnvirometriX Ltd

Description

Soil bulk density (fine earth) 10 x kg / m3 at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Processing steps are described in detail here. Antarctica is not included.

To access and visualize maps use: OpenLandMap.org

If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:

All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:

  • sol = theme: soil,
  • bulkdens.fineearth = variable: soil bulk density,
  • usda.4a1h = determination method: laboratory method code,
  • m = mean value,
  • 250m = spatial resolution / block support: 250 m,
  • b10..10cm = vertical reference: 10 cm depth below surface,
  • 1950..2017 = time reference: period 1950-2017,
  • v0.2 = version number: 0.2,

Files

soil_bulk_density_LandGIS_app.png

Files (38.0 GB)

Name Size Download all
md5:7649b8ff30e164eba111ff020fb5152f
464.9 kB Preview Download
md5:5ddcba7762c8e8f61a1c4158e4fd340d
2.2 kB Download
md5:0e58a0c4891381a05fc6f45249d45c03
1.7 kB Download
md5:d7c9d09075049c13f87b0a82fdda4e81
2.9 GB Preview Download
md5:b8897ca88430f5dd8930dc3dce2bb851
2.8 GB Preview Download
md5:4184de6d6c4c95f783e7e92cff06dc6a
2.8 GB Preview Download
md5:9e71f4e9356f5b35d82c5dfb1070bed3
2.8 GB Preview Download
md5:4b18d43f5df9c8526fd193e06e768024
2.8 GB Preview Download
md5:ce02ec729170a37f65e94921ab82ccb9
2.8 GB Preview Download
md5:0c8e842d8d06baeb42346f00ec3ae8cc
2.6 GB Preview Download
md5:61caf961ee04d74261d375f7a1255ab7
2.6 GB Preview Download
md5:db9c9d2494e6d9b0d72e452a29c1748f
2.6 GB Preview Download
md5:b3804a6016d3aff30f9063ca8eee6804
2.6 GB Preview Download
md5:8bc5ae62ecb4d143386e4445813b63d5
2.7 GB Preview Download
md5:216708b2b8e039a634d4e1a6e20d8cd0
2.6 GB Preview Download
md5:6c11f4cd3faff2d6946a594bc38b031a
2.7 GB Preview Download
md5:a477c5ed7987aae468f33366024caa3d
2.6 GB Preview Download

Additional details

References

  • Hengl, T., de Jesus, J.M., Heuvelink, G.B., Gonzalez, M.R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B. and Guevara, M.A., (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), p.e0169748. https://doi.org/10.1371/journal.pone.0169748
  • Sanderman, J., Hengl, T., Fiske, G., (2017). The soil carbon debt of 12,000 years of human land use. PNAS, https://dx.doi.org/10.1073/pnas.1706103114
  • Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.