Published November 2, 2018 | Version v0.2
Dataset Open

Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution

  • 1. EnvirometriX Ltd

Description

Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Based on machine learning predictions from global compilation of soil profiles and samples. Processing steps are described in detail here. Antarctica is not included.

To access and visualize maps use: OpenLandMap.org

If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:

All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:

  • sol = theme: soil,
  • clay.wfraction = variable: sand weight fraction,
  • usda.3a1a1a = determination method: laboratory method code,
  • m = mean value,
  • 250m = spatial resolution / block support: 250 m,
  • b10..10cm = vertical reference: 10 cm depth below surface,
  • 1950..2017 = time reference: period 1950-2017,
  • v0.2 = version number: 0.2,

Files

landGIS_clay_content.jpg

Files (26.3 GB)

Name Size Download all
md5:f2cbcd470a84d3b8c8c90c081f9efe73
572.9 kB Preview Download
md5:e4849f67676e63cb2cafd22fa17f9c0c
3.8 kB Download
md5:8b19eead4ba17a8fed278eb4c0f3c8e5
4.6 kB Download
md5:5c6ab29f9068a9fae746b5aa02d2d535
2.0 GB Preview Download
md5:7e5aa510c652f5735109e41f03674ff7
2.0 GB Preview Download
md5:a8f0d36ced5f5a023f5a058feaa10291
2.0 GB Preview Download
md5:9b302e6412f6658a7ced6371d73d8744
2.0 GB Preview Download
md5:e0211bf7020ca7aa54916163416ea283
2.0 GB Preview Download
md5:5e6353b50b9770faa347f3e57c7462c9
2.0 GB Preview Download
md5:81d4f11752c4d1c03e992a546ebdc381
2.0 GB Preview Download
md5:f859dd0c2f646ef796b43bad76915961
2.0 GB Preview Download
md5:374375478fc163e0f2de6c80421b943c
2.0 GB Preview Download
md5:3fbb78a3995d072d4333372328157ef0
2.0 GB Preview Download
md5:ec8b8dc0f7e0c529e08a63f1d3ce36ac
2.0 GB Preview Download
md5:78bb65be4839573a793d0d369b52782f
2.0 GB Preview Download
md5:a8f358160b266c6b8e3c880c9e1ca8c5
2.0 GB Preview Download

Additional details

References

  • USDA-NRCS, (2014) Laboratory Methods Manual (SSIR 42). U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center.
  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.
  • Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.