Handling missing observations with multiple imputation
- 1. Research Institute for Nature and Forest (INBO)
Description
Missing observations are unavoidable in long-standing monitoring projects. Currently the Underhill (Underhill & Prys-Jones 1994) or birdSTATs indices (van der Meij 2013) are frequently used in ornithology. However both approaches underestimate the confidence intervals. Instead, we propose multiple imputation (Rubin 1987), the standard in medical and social science, but hardly known in ecology. Our analysis provides insight on the nature of the problems with the Underhill and birdSTATs indices and demonstrates the value of multiple imputation. Besides a short theoretical introduction, we will present our “multimput” package (Onkelinx et al 2016). This is a free and open-source R package (R Core Team 2016) which is available at https://github. com/inbo-BMK/multimput. The “multimput” package has several benefits: 1. It allows flexible modelling of both the counts at individual sites (required for the imputation) and of the population totals. 2. The models allow for covariates, hence seasonal effects resulting from multiple visits per site can be handled properly. 3. Several probability distributions (e. g. Poisson and negative binomial) are available.
Files
session_10_onkelinx_thierry_handling_missing_observations_with_multiple_imputation.pdf
Files
(346.6 kB)
Name | Size | Download all |
---|---|---|
md5:ad16ef2964df0d2886d16782b1ecd0d3
|
346.6 kB | Preview Download |
Additional details
References
- Graham J.W., Olchowski A.E. & Gilreath T.D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 8 (3): 206–213. DOI: 10.1007/s11121-007-0070-9.
- Honaker J., King G. & Blackwell M. (2011). Amelia II: A program for missing data. Journal of Statistical Software 45 (7): 1–47. DOI: 10.18637/jss.v045.i07.
- van der Meij, T. (2013). birdSTATs. Species Trends Analysis Tool (STAT) for European bird data.
- Onkelinx T., Devos K. & Quataert P. (2016). Working with population totals in the presence of missing data. Comparing imputation methods in terms of bias and precision. Journal of Ornithology 1–13. DOI: 10.1007/s10336-016-1404-9
- Onkelinx T., Devos K. & Quataert P. (2016b). Multimput: Using multiple imputation to address missing data. URL: https://github.com/inbo/multimput. DOI: 10.5281/zenodo.48423
- Pannekoek J. & Van Strien A. (2005). TRIM 3 Manual (TRends & Indices for Monitoring data).
- R Core Team (2013). R: A language and environment for statistical computing. Version 3.0.1. URL: http://www.r-project.org/.
- Rubin D.B. (1987). Multiple imputation for nonresponse in surveys. John Wiley; Sons, Ltd., New York, NY.
- Underhill L.G. & Prys-Jones R.P. (1994). Index numbers for waterbird populations. I. Review and methodology. Journal of Applied Ecology 31 (3): 463–480. DOI: 10.2307/2404443.
- van Buuren S. & Groothuis-Oudshoorn K. (2011). mice: Multivariate imputation by chained equations in r. Journal of Statistical Software 45 (3): 1–67. DOI: 10.18637/jss.v045.i03.