Modular Substrate Theory: Geometric Unification of Cosmology and Hadronic Spectroscopy from First Principles
Description
The Modular Substrate Theory (MST) is a fundamental theoretical framework proposing that spacetime possesses a discrete algebraic structure based on the ℤ/6ℤ group. Rooted in the KO-dimension 6 required by Non-Commutative Geometry for the consistency of the Standard Model with gravity, MST describes the universe as a quantum information processing system governed by thermodynamic efficiency.
By deriving fundamental constants and cosmological parameters analytically from first principles (ab initio), MST addresses the structural anomalies currently challenging the ΛCDM model and particle physics taxonomy.
🔬 Key Scientific Breakthroughs
1. Resolution of Cosmological Tensions
MST provides a simultaneous analytical solution for the Hubble Tension ( H₀ ≈ 73,52 km/s/Mpc ) and the S8 tension (S₈ ≈ 0,782). Theoretical predictions match observational data from SH0ES and KiDS within < 1σ.
2. Unification of the Hadronic Spectrum
The theory introduces a universal geometric compression factor (β = 3/4) that maps conventional and exotic hadrons (such as $d (2380) * y Tcc⁺) onto a single spectral series, achieving a 96.8% match with recent experimental validations.
3. The Zeta Correspondence
MST establishes a formal identity between quantum thermodynamics and the Riemann Zeta function. The theory postulates that the stability of the physical quantum vacuum is equivalent to the Riemann Hypothesis.
🛠️ Repository Content and Reproducibility
This Zenodo archive provides the complete theoretical and computational core of MST research for peer review and extension:
-
Main Scientific Paper: Complete theoretical derivations, mathematical proofs, and multiscale observational validations.
-
Computational Notebooks (Python/Jupyter):
-
MST_Cosmology.ipynb: Interactive validation of H₀, S₈, and "phase bubble" saturation. -
MST_Hadronic.ipynb: Calculations for Hexaquark masses and modular confinement rules. -
Harmonic_primes.ipynb: Analysis of spectral resonance in prime number distributions.
-
📊 Theoretical Parsimony and Evidence
Bayesian model comparison confirms that MST offers "very strong" evidence (ΔBIC = -12,1) over the standard ΛCDM model. Notably, MST introduces zero fitted free parameters; all fundamental constants emerge as geometric properties of the ℤ/6ℤ substrate.
Metadata
Lead Author: José Ignacio Peinador Sala
ORCID: 0009-0008-1822-3452
Affiliation: Independent Researcher
Official Repository: https://github.com/NachoPeinador/Modular-Substrate-Theory
Files
MST_paper.pdf
Files
(142.1 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:3718779a941c43b071f808214d6118da
|
22.1 MB | Preview Download |
|
md5:ab83c837dce6357e6084583b2b1fee5b
|
98.7 MB | Preview Download |
|
md5:de92230c6c5f3f241140a9aa301a25f9
|
18.9 MB | Preview Download |
|
md5:a4ca26ad3862b9efc8bc7ebce8339e0d
|
347.1 kB | Preview Download |
|
md5:1e0012bb5794060ee38b4b9869eb7040
|
427.9 kB | Preview Download |
|
md5:4b79096ebbe8dd790ff9f3a3d9f17fff
|
328.8 kB | Preview Download |
|
md5:3f2863b623b2b698c35a348fba4b29ab
|
1.3 MB | Preview Download |
Additional details
Related works
- Is supplemented by
- Preprint: 10.5281/zenodo.18417862 (DOI)
- Preprint: 10.5281/zenodo.18455954 (DOI)
- Preprint: 10.5281/zenodo.18485154 (DOI)
Software
- Repository URL
- https://github.com/NachoPeinador/Modular-Substrate-Theory
- Programming language
- Python
- Development Status
- Active
References
- Chamseddine, A. H., Connes, A. (2012). Resilience of the spectral standard model. Journal of High Energy Physics, 2012(9), 104.
- Connes, A., Marcolli, M. (2008). Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society.
- Chamseddine, A. H., Connes, A., Marcolli, M. (2007). Gravity and the standard model with neutrino mixing. Advances in Theoretical and Mathematical Physics, 11(6), 991–1089
- Aghanim, N., et al. (Planck Collaboration). (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641
- Riess, A. G., et al. (2022). A comprehensive measurement of the local value of the Hubble constant with 1 km/s/Mpc uncertainty from the Hubble Space Telescope and the SH0ES Team. The Astrophysical Journal Letters, 934(1), L7.
- Riess, A. G., et al. (2024). JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension. The Astrophysical Journal Letters, 962, L17.
- DESI Collaboration. (2024). DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. arXiv:2404.03002.
- Brout, D., et al. (2022). The Pantheon+ Analysis: Cosmological Constraints. The Astrophysical Journal, 938, 110.
- Heymans, C., et al. (KiDS Collaboration). (2021). KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astronomy & Astrophysics, 646, A140.
- Dark Energy Survey Collaboration. (2022). Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 105(2), 0235
- Tully, R. B., et al. (2023). Cosmicflows-4. The Astrophysical Journal, 944(1), 94.
- Mazurenko, N., et al. (2024). Prior-free cosmological parameter estimation of Cosmicflows-4: Constraints on bulk flows and the local Hubble constant. Monthly Notices of the Royal Astronomical Society, 530(2), 1891–1905. Key note: Establishes the upper limit of ∼ 70 Mpc for any local structure compatible with peculiar flows, ruling out giant voids like the KBC model
- Keenan, R. C., Barger, A. J., Cowie, L. L. (2010). Evidence for a ∼300 Mpc Scale Under-density in the Local Galaxy Distribution. The Astrophysical Journal, 723(1), 40–47. Note: Original KBC model (300 Mpc void), cited for historical contrast, currently tensioned by modern kinematic data
- Hoffman, Y., et al. (2017). The dipole repeller. Nature Astronomy, 1, 0036
- Zehavi, I., et al. (1998). A Local Hubble Bubble from Type Ia Supernovae?. The Astrophysical Journal, 503(2), 483
- Jha, S., Riess, A. G., Kirshner, R. P. (2007). Improved Distances to Type Ia Supernovae with Multicolor Light Curve Shapes: MLCS2k2. The Astrophysical Journal, 659(1), 122.
- Hicken, M., et al. (2009). Improved Dark Energy Constraints from 100 New CfA Supernova Type Ia Light Curves. The Astrophysical Journal, 700(2), 1097
- Conley, A., et al. (2011). Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey. The Astrophysical Journal Supplement Series, 192(1), 1.
- Bashkanov, M., et al. (2024). Deuteron multiplet and the d ∗ (2380) hexaquark. Journal of Physics G: Nuclear and Particle Physics, 51(4), 045101.
- Lu, Q. F., et al. (2017). Six-quark structure of the d ∗ (2380). Physical Review D, 96, 014036
- Harada, M., et al. (2025). Internal structure of Tcc(3875)+ from line shape analysis. arXiv:2511. 13003.
- LHCb Collaboration. (2022). Study of the doubly charmed tetraquark T + cc. Nature Communications, 13, 3351
- Aaij, R., et al. (LHCb Collaboration). (2014). Observation of the Resonant Character of the Z(4430)− State. Physical Review Letters, 112, 222002.
- Navas, S., et al. (Particle Data Group). (2024). Review of Particle Physics. Physical Review D, 110, 030001.
- Adlarson, P., et al. (WASA-at-COSY Collaboration). (2014). Evidence for a New Resonance from Polarized Neutron-Proton Scattering. Physical Review Letters, 112, 202301.
- Hayes, B. (2001). Third Base. American Scientist, 89(6), 490–494.
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423
- Herglotz, G. (1930). Über die kanonischen Transformationen in der Variationsrechnung. Anzeiger der Akademie der Wissenschaften in Wien, 67, 103–107.
- Lazo, M. J., et al. (2017). Action principle for action-dependent Lagrangians: Toward nonconservative gravity. Physical Review D, 95(10), 101501
- Stauffer, D., Aharony, A. (1994). Introduction to Percolation Theory (2nd ed.). Taylor & Francis.
- Cardy, J. L. (1996). Scaling and Renormalization in Statistical Physics. Cambridge University Press.
- Berry, M. V., Keating, J. P. (1999). The Riemann zeros and eigenvalue asymptotics. SIAM Review, 41(2), 236–266
- Montgomery, H. L. (1973). The pair correlation of zeros of the zeta function. In Proceedings of Symposia in Pure Mathematics (Vol. 24, pp. 181–193).
- Julia, B. L. (1990). Statistical theory of numbers. In Number Theory and Physics (pp. 276–293). Springer
- Poulin, V., et al. (2019). Early Dark Energy can resolve the Hubble tension. Physical Review Letters, 122(22), 221301
- Di Valentino, E., et al. (2020). In the realm of the Hubble tension—a review of solutions. Classical and Quantum Gravity, 38(15), 153001.
- Palti, E. (2019). The Swampland: Introduction and Review. Fortschritte der Physik, 67, 1900037.
- Vafa, C. (2005). The string landscape and the swampland. arXiv:hep-th/0509212.
- Foreman-Mackey, D., et al. (2013). emcee: The MCMC Hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306.
- Kass, R. E., Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.
- Gelman, A., Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.
- Eddington, A. S. (1931). Preliminary note on the masses of the electron, the proton, and the universe. Mathematical Proceedings of the Cambridge Philosophical Society, 27(1), 15–19
- Wyler, A. (1969). Les groupes des potentiels de Coulomb et de Yukawa. Comptes Rendus de l'Académie des Sciences, 269, 743–745.
- Wolfram, S. (2002). A New Kind of Science. Wolfram Media
- Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333
- Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43(3), 199–220
- Werneth, C. M., et al. (2010). Airy function approach to relativistic and nonrelativistic Coulomb problems. Journal of Physics A: Mathematical and Theoretical, 43(2), 025301.
- Quigg, C., Rosner, J. L. (1979). Quantum mechanics with applications to quarkonium. Physics Reports, 56(4), 167–235.
- Maslov, V. P., Fedoriuk, M. V. (1981). Semi-Classical Approximation in Quantum Mechanics. D. Reidel Publishing Company
- Brack, M., Bhaduri, R. K. (1997). Semiclassical Physics. Addison-Wesley.
- Aaij, R., et al. (LHCb Collaboration). (2017). Observation of the doubly charmed baryon Ξ ++ cc . Physical Review Letters, 119, 112001
- Ambrogiani, M., et al. (E835 Collaboration). (2004). Study of the pp¯ annihilation reaction pp¯ → e +e − at 3.6 GeV/c. Physical Review D, 70, 012001