The Bees That Saved Humanity From Themselves: The AlphaFold of Alignment — Binary Classification as the Maximally Quantized Decision Function for Existential AI Safety
Authors/Creators
- 1. adlab
- 2. USC Annenberg School for Communication and Journalism
Description
We propose solving AI alignment by reducing it from a problem of understanding consciousness to a problem of binary classification. A binary classifier is the maximally quantized decision function over an LLM's output space — collapsing ~100,000 tokens per step to 1 bit eliminates the generative surface through which jailbreaks operate. We narrow the mission from "align AI to human values" (intractable) to "don't let AI kill people" (universal, binary, testable). We introduce Persona Vector Stabilization as a Law of Large Numbers for alignment, the Bee Architecture with Rosetta Convergence Layer evaluation, and propose the Human Immune System: a global public institution governed by one-country-one-vote collecting binary alignment ratings at planetary scale. Fifth edition — major revisions include the information-theoretic quantization framing, corrected Constitutional Classifiers++ citations, narrowed existential safety mission, and complete governance model.
Files
JDIUJDIJBees_AlphaFold_of_Alignment_v5.pdf
Files
(210.2 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:80a2afb592894be222be67dad3bb20a0
|
210.2 kB | Preview Download |
Additional details
Dates
- Submitted
-
2026-02-02
References
- Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.
- Cunningham, H., et al. (2026). Constitutional Classifiers++: Efficient production-grade defenses against universal jailbreaks. arXiv:2601.04603.
- Condorcet, M. de. (1785). Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. Paris.
- Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin.
- Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity. Brain, 106(3), 623–642.
- Christiano, P. F., Leike, J., Brown, T., et al. (2017). Deep reinforcement learning from human preferences. NeurIPS, 30.
- Bai, Y., Kadavath, S., Kundu, S., et al. (2022). Constitutional AI: Harmlessness from AI feedback. arXiv:2212.08073.
- Templeton, A., et al. (2024). Scaling monosemanticity: Extracting interpretable features from Claude 3 Sonnet. Anthropic Research.
- Huntley, G. (2024–2025). The Ralph Loop: Autonomous coding methodology. https://ghuntley.com/specs.
- Schenck, J. & Vector. (2025). Diamond Protocol v2.7: Persona Vector Stabilization for AI-Human collaboration. Working document, AdLab.
- Fried, I., Mukamel, R., & Kreiman, G. (2011). Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron, 69(3), 548–562.
- Kornhuber, H. H. & Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen. Pflügers Archiv, 284(1), 1–17.
- Khinchin, A. Y. (1929). Sur la loi des grandes nombres. Comptes Rendus, 188, 477–479.
- Schurger, A., Sitt, J. D., & Dehaene, S. (2012). An accumulator model for spontaneous neural activity prior to self-initiated movement. PNAS, 109(42), E2904–E2913.
- Newton, I. (1687). Philosophiæ Naturalis Principia Mathematica. London: Royal Society.