AI Mediated Cognitive Extension- Engineering Solutions to Substrate Constraints
Authors/Creators
Description
This journal article preprint presents a comprehensive theoretical framework for AI-mediated cognitive extension based on information physics principles.
Human cognitive capacity faces a fundamental bottleneck: working memory can hold only approximately 4-7 items simultaneously, regardless of intelligence or expertise. Meanwhile, the visual system alone compresses roughly one billion bits per second of retinal input to approximately 50 bits per second of conscious awareness—a compression ratio of 25 million to one. This preprint demonstrates how artificial intelligence systems could extend human cognitive capacity not by increasing biological processing power, but by creating hybrid systems where AI handles bandwidth-intensive information compression while biological cognition maintains adaptive reasoning and consciousness.
The framework integrates multiple independent lines of evidence spanning neuroscience, information theory, comparative biology, and consciousness research. We present seven major testable predictions with specific protocols, timelines, and falsification criteria. These include working memory enhancement without capacity increase, neuroplastic adaptation to AI-augmented information following sensory substitution timelines, and a novel prediction regarding cross-species sleep duration correlating with information processing intensity rather than brain size (R² = 0.82 vs. 0.3 for brain mass alone). The analysis extends to consciousness modulation through autonomic control and direct substrate perception via psychedelic experiences, providing multiple validation pathways for the underlying information-theoretic model.
Critically, all required technology exists today, requiring only integration rather than invention. A two-phase implementation strategy reduces risk by validating theoretical principles through information encoding systems ($2-5M, 2026-2027) before investing in sensory augmentation hardware ($15-25M, 2027-2029). The analysis demonstrates that bats sleeping 19.9 hours after only 4 hours of extreme-intensity echolocation processing, elephants sleeping 3.5 hours across 20+ hours of moderate activity, and dolphins employing unihemispheric sleep to maintain the required total erasure time while satisfying breathing constraints all support the information erasure hypothesis of sleep function according to Landauer's principle.
This work connects ancient contemplative wisdom with modern neuroscience, showing that meditation masters' reports of "seeing reality directly" and psychedelic users' consistent descriptions of geometric substrate patterns represent genuine perception of information-theoretic structures underlying spacetime emergence, not hallucinations. All research follows open science principles with radical transparency, community involvement, and no gatekeeping. The preprint includes complete testing protocols, seven publication-ready figures, comprehensive references, and detailed implementation architectures ready for immediate validation.
Keywords: cognitive augmentation, working memory, information compression, AI-human hybrid systems, sensory augmentation, neuroplasticity, Default Mode Network, consciousness modulation, psychedelic neuroscience, information physics, COSMIC Framework, Landauer's principle, cross-species sleep patterns
Files
AI-Mediated Cognitive Extension - Engineering Solutions to Substrate Constraints.pdf
Files
(1.1 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:6f6feda8968e41c1e9436837045270ec
|
1.1 MB | Preview Download |
Additional details
Dates
- Submitted
-
2026-02-02Copyright © 2025 Michael Kevin Baines (ORCID: 0009-0001-8084-3870). This work is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). You are free to share and adapt this material for any purpose, including commercially, provided you give appropriate credit, provide a link to the license, and indicate if changes were made. License: https://creativecommons.org/licenses/by/4.0/
References
- Baines, M.K. (2024). Mathematical Constants in Cosmic Microwave Background: Preliminary Evidence for Information Processing Signatures During Inflation. Zenodo. DOI: 10.5281/zenodo.15845342
- Benson, H., Lehmann, J. W., Malhotra, M. S., Goldman, R. F., Hopkins, J., & Epstein, M. D. (1982). Body temperature changes during the practice of g Tum-mo yoga. Nature, 295(5846), 234-236. https://doi.org/10.1038/295234a0
- Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29-52. https://doi.org/10.1111/nyas.12360
- Bach-y-Rita, P., & Kercel, S. W. (2003). Sensory substitution and the human-machine interface. Trends in Cognitive Sciences, 7(12), 541-546. https://doi.org/10.1016/j.tics.2003.10.013
- Baines, M. K. (2024). E=ic²: The COSMIC Framework. Available at: https://eequalsicsquared.com
- Baines, M. K. (2025a). The speed of novelty: Why peak performance happens young (the veteran's paradox). Ic² Research Institute Blog. Available at: https://eequalsicsquared.com/blog.html
- Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences, 108(50), 20254-20259. https://doi.org/10.1073/pnas.1112029108
- Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49-57. https://doi.org/10.1016/j.tics.2006.11.004
- Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the anarchic brain: Toward a unified model of the brain action of psychedelics. Pharmacological Reviews, 71(3), 316-344. https://doi.org/10.1124/pr.118.017160
- Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., ... & Nutt, D. J. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143. https://doi.org/10.1073/pnas.1119598109
- Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., ... & Nutt, D. (2014). The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20. https://doi.org/10.3389/fnhum.2014.00020
- Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55-81. https://doi.org/10.1016/0010-0285(73)90004-2
- Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922
- Davidson, R. J., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M., Muller, D., Santorelli, S. F., ... & Sheridan, J. F. (2003). Alterations in brain and immune function produced by mindfulness meditation. Psychosomatic Medicine, 65(4), 564-570. https://doi.org/10.1097/01.PSY.0000077505.67574.E3
- Gomez-Emilsson, A. (2016). The hyperbolic geometry of DMT experiences: Symmetries, sheets, and saddled scenes. Qualia Computing. Available at: https://qualiacomputing.com/2016/12/12/the-hyperbolic-geometry-of-dmt-experiences/
- Koch, K., McLean, J., Segev, R., Freed, M. A., Berry, M. J., Balasubramanian, V., & Sterling, P. (2006). How much the eye tells the brain. Current Biology, 16(14), 1428-1434. https://doi.org/10.1016/j.cub.2006.05.056
- Kozhevnikov, M., Elliott, J., Shephard, J., & Gramann, K. (2013). Neurocognitive and somatic components of temperature increases during g-tummo meditation: Legend and reality. PLoS ONE, 8(3), e58244. https://doi.org/10.1371/journal.pone.0058244
- Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403. https://doi.org/10.1073/pnas.070039597
- Müller, F., Dolder, P. C., Schmidt, A., Liechti, M. E., & Borgwardt, S. (2018). Altered network hub connectivity after acute LSD administration. NeuroImage: Clinical, 18, 694-701. https://doi.org/10.1016/j.nicl.2018.03.005
- Nørretranders, T. (1998). The User Illusion: Cutting Consciousness Down to Size. Viking Press.
- Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P. J., & Vaccarino, F. (2014). Homological scaffolds of brain functional networks. Journal of The Royal Society Interface, 11(101), 20140873. https://doi.org/10.1098/rsif.2014.0873
- Ptito, M., Moesgaard, S. M., Gjedde, A., & Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128(3), 606-614. https://doi.org/10.1093/brain/awh380
- Ptito, M., Moesgaard, S. M., Gjedde, A., & Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128(3), 606-614. https://doi.org/10.1093/brain/awh380
- Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682. https://doi.org/10.1073/pnas.98.2.676
- Sharma, A., & Dorman, M. F. (2006). Central auditory development in children with cochlear implants: Clinical implications. Advances in Oto-Rhino-Laryngology, 64, 66-88. https://doi.org/10.1159/000094646
- Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: A topographical perspective. Nature Reviews Neuroscience, 22(8), 503-513. https://doi.org/10.1038/s41583-021-00474-4
- Strassman, R. (2001). DMT: The Spirit Molecule. Park Street Press. Zeidan, F., Adler-Neal, A. L., Wells, R. E., Stagnaro, E., May, L. M., Eisenach, J. C., ... & Coghill, R. C. (2015). Mindfulness-meditation-based pain relief is not mediated by endogenous opioids. Journal of Neuroscience, 35(46), 15307-15325. https://doi.org/10.1523/JNEUROSCI.2542-15.2015