Novel quantitative push gravity/field theory poised for verification
Description
[Note: The edits of this version_29 are typed in blue color font]
Abstract
This work develops a quantitative formulation of Push Gravity (PG), a physical framework in which gravitation arises from momentum transfer by an omnipresent flux of discrete particles, rather than from action at a distance or from spacetime curvature. Building on a small set of primary principles, the theory recovers the classical inverse-square law of gravity for stationary bodies in the steady state, while extending gravitational behavior beyond the weak-absorption regime assumed in earlier push-based models.
A central result is that gravitational interaction depends not only on total mass but on an absorption-controlled effective mass, which may differ from the real (substantial) mass of a body due to self-shielding effects. The gravitational constant emerges as a derived quantity linked to a mass-attenuation coefficient, allowing the inverse-square law to be locally preserved even when effective mass varies with internal structure and compactness. The theory predicts a universal maximum gravitational acceleration associated with saturation of momentum transfer, beyond which additional mass accretion does not increase surface acceleration, but increases the range of the gravitational field.
The framework provides explicit treatments of internal and external gravitational fields of layered spherical bodies, reformulates gravitational superposition, and clarifies the operational meaning of the equivalence principle. Matter, inertia, and mass acquire well-defined physical interpretations rooted in momentum exchange and geometry. Extensions to moving bodies suggest that many empirical relations of special and general relativity may continue to operate as effective descriptions within a broader PG ontology, without being foundational to it.
Push Gravity further admits analogous momentum-transfer descriptions for electromagnetic and nuclear interactions, indicating a potential route toward unification of fundamental forces through a common absorption-driven mechanism. Applications developed in this work range from particle structure to astrophysical compact objects and cosmology. In particular, the theory predicts that gravitational redshift can become extremely large for sufficiently compact systems without invoking event horizons or spacetime singularities. This leads to a novel redshift–distance relation and to the existence of a minimum mass threshold for a true black hole, defined operationally by complete suppression of electromagnetic escape.
Taken together, these results suggest that gravitational redshift may play a far more significant role in astrophysics and cosmology than conventionally assumed, challenging the necessity of universal expansion as the sole origin of observed cosmological redshifts. The theory is presented as a self-contained physical framework poised for further analytical development and experimental interrogation.
Beyond gravitation, the push principle has been extended to other interaction fields within the broader body of work. These developments indicate that a unified push-based description of fundamental forces may be achievable in principle, forming the basis for a prospective quantum push field theory (QPFT).
Notes
Files
PUSH-GRAVITY-new-approach-v29.pdf
Files
(12.7 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:5f6a0f560e0bd3ebbb32b6ff34a85ead
|
12.7 MB | Preview Download |
Additional details
References
- Chappel, J.M., Iqbal, A. & Abbott, D. (2012) The gravitational field of a cube. arXiv:1206.3857v1 [physics.class-ph]
- de Duillier, Nicolas Fatio (1929) De la cause de la pesanteur. Drei Untersuchungen zur Geschichte der Mathematik, in: Schriften der Strassburger Wissenschaftlichen Gesellschaft in Heidelberg, 10:(19-66). URL https://fr.wikisource.org/wiki/De_la_cause_de_la_pesanteur#
- Dibrov, A. (2011) Unified model of shadow-gravity and the exploding electron. Apeiron 18, 43-83
- Gagnebin, B (1949) De la cause de la pesanteur. Mémoire de Nicolas Fatio de Duillier présente à la Royal Society le 26 février 1690. The Royal Society 6(2), 125-160. doi:https://doi.org/10.1098/rsnr.1949.0017
- Lorenzen, B. (2017) The cause of the allais effect solved. International Journal of Astronomy and Astrophysics 7, 69-90
- Poincaré, H. (1908) La dinamique de l' éléctron. Revue Gen. Sci. Pures Appl. 19, 386-402
- Thomas, C.M. (2014) Graviton theory of everything. http://astronomy-links.net/GToE.html
- Zumberge, Mark A., Ander, Mark E., Lautzenhiser, Ted V., Parker, Robert L., Aiken, Carlos L. V., Gorman, Michael R., Nieto, Michael Martin, Cooper, A. Paul R., Ferguson, John F., Fisher, Elizabeth, Greer, James, Hammer, Phil, Hansen, B. Lyle, McMechan, George A., Sasagawa, Glenn S., Sidles, Cyndi, Stevenson, J. Mark & Wirtz, Jim (1990) The greenland gravitational constant experiment. Journal of Geophysical Research 95(B10), 15483. doi:10.1029/jb095ib10p15483
- Bialy, S. & Loeb, A. (2018) Could solar radiation pressure explain Oumuamua's peculiar acceleration? The Astrophysical Journal Letters 868:L1, 1-5. doi:https://doi.org/10.3847/2041-8213/aaeda8.
- Kajari, E., Harshman, N.L., Rasel, E.M., Stenholm, S., Sussmann, G. & Schleich, W.P. (2010) Inertial and gravitational mass in quantum mechanics. arXiv doi:10.1007/s00340-010-4085-8. URL https://arxiv. org/abs/1006.1988.
- Bird, G.A. (1995) Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York.
- Danilatos, G.D. (1997) In-Situ Microscopy in Materials Research, chap. 2. Environmental Scanning Electron Microscopy, pp. 14-44. Kluwer Academic Publishers, Boston/Dordrecht/London.
- Danilatos, G.D. (2012) Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron 43, 600-611.
- Edwards, R. M. (2007) Photon-graviton recycling as cause of gravitation. Apeiron 14(3), 214-233.
- Gamow, G. (1949) On relativistic cosmology. Reviews of Modern Physics 21(3), 367-373. doi:10.1103/ RevModPhys.21.367.
- Hogan, C.J. (1989) Mock gravity and cosmic structure. The Astrophysical Journal 340(1-10). doi:10.1086/ 167371.
- Okun, R.F. (2006) The concept of mass in the einstein year. arXiv doi:10.1142/9789812772657_0001. URL https://arxiv.org/abs/hep-ph/0602037v1.
- Wang, B. & Field, G.B. (1989) Galaxy formation by mock gravity with dust. The Astrophysical Journal 346, 2?11. doi:10.1086/167981.
- Field, G.B. (1971) Instability and waves driven by radiation in interstellar space and in cosmological models. The Astrophysical Journal 165, 29-40. doi:10.1086/150873.
- Giacintucci, S., Markevitch, M., Johnston-Hollitt, M., Wik, 5 Q. D. R., Wang, H. S. & Clarke, T. E. (2020) Discovery of a giant radio fossil in the ophiuchus galaxy cluster. arXiv:2002.01291 [astro-ph.GA] .
- Lomas, Robert (1999) The Man Who Invented the Twentieth Century. Headline Book Publishing. ISBN 0747275882.
- Fedosin, Sergey G. (2021) On the structure of the force field in electro gravitational vacuum doi:10.5281/zenodo.4515206.
- Llanes-Estrada, Felipe J. & Navardo, Gaspar Moreno (2012) CUBIC NEUTRONS. Modern Physics Letters A 27(06), 1250033. doi:10.1142/S0217732312500332.
- Loureiro, A, Cuceu, A, Abdalla, FiB., Moraes, B, Whiteway, L, McLeod, M, Balan, ST., Lahav, O, Benoit-Lévy, A, Manera, M & et al. (2019) Upper bound of neutrino masses from combined cosmological observations and particle physics experiments. Physical Review Letters 123(8). ISSN 1079-7114. doi:10.1103/physrevlett.123.081301. URL http://dx.doi.org/10.1103/PhysRevLett.123.081301.
- Meis, C. (2020) Quantum vacuum cosmology. ZENODO doi:10.5281/zenodo.4393542
- Sukhorukov, NV (2017-2020) Electron radius in the macroneutrino model of the electron using the orbital conception of elementary particles URL https://sites.google.com/site/snvspace22/science/electronradius.
- Stein, Robert, van Velzen, Sjoert, Kowalski, Marek, Franckowiak, Anna, Gezari, Suvi, Miller-Jones, James C. A., Frederick, Sara, Sfaradi, Itai, Bietenholz, Michael F., Horesh, Assaf, Fender, Rob, Garrappa, Simone, Ahumada, Tomás, Andreoni, Igor, Belicki, Justin, Bellm, Eric C., Böttcher, Markus, Brinnel, Valery, Burruss, Rick, Cenko, S. Bradley, Coughlin, Michael W., Cunningham, Virginia, Drake, Andrew, Farrar, Glennys R., Feeney, Michael, Foley, Ryan J., Gal-Yam, Avishay, Golkhou, V. Zach, Goobar, Ariel, Graham, Matthew J., Hammerstein, Erica, Helou, George, Hung, Tiara, Kasliwal, Mansi M., Kilpatrick, Charles D., Kong, Albert K. H., Kupfer, Thomas, Laher, Russ R., Mahabal, Ashish A., Masci, Frank J., Necker, Jannis, Nordin, Jakob, Perley, Daniel A., Rigault, Mickael, Reusch, Simeon, Rodriguez, Hector, Rojas-Bravo, César, Rusholme, Ben, Shupe, David L., Singer, Leo P., Sollerman, Jesper, Soumagnac, Maayane T., Stern, Daniel, Taggart, Kirsty, van Santen, Jakob, Ward, Charlotte, Woudt, Patrick & Yao, Yuhan (2021) A tidal disruption event coincident with a high-energy neutrino. Nature Astronomy doi:10.1038/s41550-020-01295-8.
- Dehmelt, HG (1989) Experiments with an isolated subatomic particle at rest URL https://www.nobelprize.org/uploads/2018/06/dehmelt-lecture.pdf.
- Simaciu, I. (2006) Contribution to the development of the theory with absorption of gravitational interaction. BULETINUL Universitatii Petrol - Gaze din Ploiesti Vol. LVIII(1), 73-80.
- Vayenas, CG & Grigoriou, D (2020) Mass generation via gravitational con?nement of relativistic neutrinos. arXiv:2001.09760 [physics.gen-ph] URL https://arxiv.org/abs/2001.09760.
- Vayenas, CG, Tsousis, D & Grigoriou, D (2020) Computation of the masses, energies and internal pressures of hadrons, mesons and bosons via the rotating lepton model. Physica A: Statistical Mechanics and its Applications 545, 123679. ISSN 0378-4371. doi:https://doi.org/10.1016/j.physa.2019.123679. URL http://www.sciencedirect.com/science/article/pii/S0378437119320515.
- Watkins, T (2020a) Estimates of the mass densities of up and down quarks and estimates of the outer radii of the small, medium and large up and down quarks URL https://www.sjsu.edu/faculty/watkins/ quarkmasses.htm
- Watkins, T (2020b) A sensible model for the con?nement and asymptotic freedom of quarks URL https: //www.sjsu.edu/faculty/watkins/quarkconfine2.htm.
- Adâmuti, I. A. (1982) The screen effect of the earth in the TETG. Il Nuovo Cimento C 5(2), 189-208. doi:10.1007/BF02509010
- Kelvin, Lord (1867) On vortex atoms. Proc. Royal Society of Edinburgh VI, 94-105.
- Parson, A.L (1915) A magneton theory of the structure of the atom. Smithsonian Miscellaneous Collections 65(11), 1-86.
- Papathanasiou, KS & Papathanasiou, MK (2020) Proton and Electron as Cyclones Formulation of a Theory of Everything. ISBN 978-960-8257-77-1.
- Consa, O (2018) Helical solenoid model of the electron. Progress in Physics 14, 80-89.
- Bulgac, A., Luo, Y.-L., Magierski, P., Roche, K. J. & Yu, Y. (2011) Real-time dynamics of quantized vortices in a unitary fermi superfluid. Science 332(6035), 1288-1291. doi:10.1126/science.1201968.
- Bulgac, Aurel, Forbes, Michael McNeil, Kelley, Michelle M., Roche, Kenneth J. & Wlazlowski, Gabriel (2014) Quantized superfluid vortex rings in the unitary fermi gas. Physical Review Letters 112(2). doi: 10.1103/physrevlett.112.025301.
- Bannikova, E. Yu., Kontorovich, V. M. & Poslavsky, S. A. (2016) Helicity of a toroidal vortex with swirl. Journal of Experimental and Theoretical Physics 122(4), 769-775. doi:10.1134/s1063776116040026.
- Falconer, Isobel (2019) Vortices and atoms in the maxwellian era. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377(2158), 20180451. doi:10.1098/rsta.2018. 0451.
- Rankine, William John Macquorn (1855) LVII. on the hypothesis of molecular vortices, or centrifugal theory of elasticity, and its connexion with the theory of heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10(68), 411-420. doi:10.1080/14786445508642001.
- Kotler, Shlomi, Peterson, Gabriel A., Shojaee, Ezad, Lecocq, Florent, Cicak, Katarina, Kwiatkowski, Alex, Geller, Shawn, Glancy, Scott, Knill, Emanuel, Simmonds, Raymond W., Aumentado, José & Teufel, John D. (2021) Direct observation of deterministic macroscopic entanglement. Science 372(6542), 622-625. doi:10.1126/science.abf2998.
- Fedi, Marco (2016) A superfuid Theory of Everything? URL https://hal.archives-ouvertes.fr/hal-01312579. Working paper or preprint.
- Hunt, A.J. (2019) New atomic model from the spectra of hydrogen, helium, beryllium, boron, carbon, and deuterium and their ions. American Based Research Journal ISSN 2304-7151. doi:10.5281/ZENODO. 3456955.
- Zinserling, Francois (2021) A new perspective on Fatio's Flux. doi:10.5281/zenodo.5773482. URL https: //doi.org/10.5281/zenodo.5773482.
- Touboul, Pierre, Métris, Gilles, Rodrigues, Manuel, André, Yves, Baghi, Quentin, Bergé, Joel, Boulanger, Damien, Bremer, Stefanie, Chhun, Ratana, Christophe, Bruno, Cipolla, Valerio, Damour, Thibault, Danto, Pascale, Dittus, Hansjoerg, Fayet, Pierre, Foulon, Bernard, Guidotti, Pierre-Yves, Hardy, Emilie, Huynh, Phuong-Anh, Lämmerzahl, Claus, Lebat, Vincent, Liorzou, Françoise, List, Meike, Panet, Isabelle, Pires, Sandrine, Pouilloux, Benjamin, Prieur, Pascal, Reynaud, Serge, Rievers, Benny, Robert, Alain, Selig, Hanns, Serron, Laura, Sumner, Timothy & Visser, Pieter (2019) Space test of the equivalence principle: First results of the MICROSCOPE mission 36(22), 225006. doi:10.1088/1361-6382/ab4707
- Feyerabend, Paul (2010) Against Method. Verso Books. ISBN 1844674428. URL https://www.ebook.de/ de/product/9026002/paul_feyerabend_against_method.html.
- Netz, Reviel (2007) The Archimedes codex : revealing the secrets of the world's greatest palimpsest. Weiden- feld & Nicolson, London. ISBN 9780297645474.
- Wikipedia contributors (2022) Hyle - Wikipedia, the free encyclopedia. URL https://en.wikipedia. org/w/index.php?title=Hyle&oldid=1078144578. [Online; accessed 22-March-2022].
- Wikipedia contributors (2019a) Heraclitus - Wikipedia, the free encyclopedia. URL https://en. wikipedia.org/w/index.php?title=Heraclitus&oldid=918062946. [Online; accessed 30-September- 2019].
- Lahres, Stefan (2023b) What if the basic force "gravity" is basically repulsive? SMuK-2023 URL https: //www.dpg-verhandlungen.de/year/2023/conference/smuk/part/gr/session/8/contribution/4.
- Lahres, Stefan (2023a) Effects of different interaction mechanisms between hypothetical gravions and matter on push gravity theories doi:10.5281/ZENODO.8176256.
- Klaus, Lauritz, Bland, Thomas, Poli, Elena, Politi, Claudia, Lamporesi, Giacomo, Casotti, Eva, Bisset, Russell N., Mark, Manfred J. & Ferlaino, Francesca (2022) Observation of vortices and vortex stripes in a dipolar condensate. Nature Physics 18(12), 1453?1458. doi:10.1038/s41567-022-01793-8.
- Donnelly, Russell J. (1991) Quantized vortices in helium II. Cambridge University Press. ISBN 0521324009.
- Pines, David & Alpar, M. Ali (1985) Super?uidity in neutron stars. Nature 316(6023), 27?32. doi:10.1038/ 316027a0
- Gallemí, A., Roccuzzo, S. M., Stringari, S. & Recati, A. (2020) Quantized vortices in dipolar supersolid bose-einstein-condensed gases. Physical Review A 102(2), 023322. doi:10.1103/physreva.102.023322.
- Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, Le Si & Deveaud- Plédran, B. (2008) Quantized vortices in an exciton?polariton condensate. Nature Physics 4(9), 706?710. doi:10.1038/nphys1051.
- Xu, Zhenglong (2021) The size and shape of a single photon. OALib 08(02), 1?22. ISSN 2333-9705. doi:10.4236/oalib.1107179.
- Aidelsburger, M., Kirchner, F. O., Krausz, F. & Baum, P. (2010) Single-electron pulses for ultrafast di?rac- tion. Proceedings of the National Academy of Sciences 107(46), 19714?19719. ISSN 1091-6490. doi: 10.1073/pnas.1010165107.
- Richard, L.S. (1962) Two-photon photoelectric e?ect. Physical Review 128(5), 2225?2229.
- Freedman, W.L. (2024) New JWST results the current tension in Ho signaling new physics. American Physical Society Meeting
- Grangier, P, Roger, G & Aspect, A (1986) Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters (EPL) 1(4), 173-179. ISSN 1286-4854. doi:10.1209/0295-5075/1/4/004.
- Labbé, Ivo, van Dokkum, Pieter, Nelson, Erica, Bezanson, Rachel, Suess, Katherine A., Leja, Joel, Brammer, Gabriel, Whitaker, Katherine, Mathews, Elijah, Stefanon, Mauro & Wang, Bingjie (2023) A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616(7956), 266-269. ISSN 1476-4687. doi:10.1038/s41586-023-05786-2.
- Liu, Haisheng (2010) On new phenomena of photon from modified double slit experiment doi:10.48550/ ARXIV.1007.5323.
- Liu, Haisheng (2011) On new phenomena of photon from modfied double slit experiment. In AIP Conference Proceedings, no. 1327 in 400.
- Panarella, E. (1987) Nonlinear Behaviour of Light at Very Low Intensities: The "Photon Clump" Model , pp. 105-167. Springer US. ISBN 9781468453867. doi:10.1007/978-1-4684-5386-7_8.
- Panarella, Emilio (2005) Single photons have not been detected: the alternative photon clump model. In Chandrasekhar Roychoudhuri & Katherine Creath, eds., The Nature of Light: What Is a Photon? SPIE. ISSN 0277-786X. doi:10.1117/12.637651.
- Prasad, Narasimha & Roychoudhuri, Chandrasekhar (2009) Exploring divisibility and summability of "photon" wave packets in nonlinear optical phenomena. In Chandrasekhar Roychoudhuri, Al F. Kracklauer & Andrei Yu. Khrennikov, eds., The Nature of Light: What are Photons? III. SPIE. ISSN 0277-786X. doi:10.1117/12.828557.
- Riess, Adam G., Anand, Gagandeep S., Yuan, Wenlong, Casertano, Stefano, Dolphin, Andrew, Macri, Lucas M., Breuval, Louise, Scolnic, Dan, Perrin, Marshall & Anderson, Richard I. (2024) JWST observations reject unrecognized crowding of Cepheid photometry as an explanation for the Hubble tension at 8sigma confidence. The Astrophysical Journal Letters 962(1), L17. ISSN 2041-8213. doi: 10.3847/2041-8213/ad1ddd.
- Roychoudhuri, Chandrasekhar & Tirfessa, Negussie (2006) Do we count indivisible photons or discrete quantum events experienced by detectors? In Wolfgang Becker, ed., SPIE Proceedings. SPIE. ISSN 0277-786X. doi:10.1117/12.691832.
- Wikipedia contributors (2024a) Alternatives to general relativity - Wikipedia, the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Alternatives_to_general_relativity& oldid=1205746044. [Online; accessed 7-May-2024].
- Wikipedia contributors (2024b) Cosmic microwave background - Wikipedia, the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Cosmic_microwave_background&oldid= 1221641058. [Online; accessed 3-May-2024].
- Wikipedia contributors (2024c) Eric lerner - Wikipedia, the free encyclopedia. URL https://en. wikipedia.org/w/index.php?title=Eric_Lerner&oldid=1220543144. [Online; accessed 7-May-2024].
- Wikipedia contributors (2024d) Planck units - Wikipedia, the free encyclopedia. URL https://en. wikipedia.org/w/index.php?title=Planck_units&oldid=1204830067. [Online; accessed 16-February- 2024].
- Margan, Erik (2012) Estimating the vacuum energy density - an overview of possible scenarios. Josef Stefan Institute, Slovenia URL https://www-f9.ijs.si/~margan/Articles/vacuum_energy_density.pdf.
- Oramah, Kevin (2023) Mass of the universe from quarks: A plausible solution to the cosmological constant problem. Journal of Modern Physics 14(12), 1672?1692. ISSN 2153-120X. doi:10.4236/jmp.2023.1412098.
- Tafazoli, Siamak (2023) Calculation of the vacuum energy density using zeta function regularization. In The 2nd Electronic Conference on Universe, vol. 61 of ECU 2023, p. 31. MDPI. doi:10.3390/ecu2023-14053.
- Michaud, André (2024) Critical analysis of the origins of heisenberg's uncertainty principle. Journal of Modern Physics 15(06), 765?795. ISSN 2153-120X. doi:10.4236/jmp.2024.156034.
- Gauthier, RF (1996) Microvita: A new approach to matter, life and health. Biomedical and LifePhysics ed D N Ghista (Braunschweig/Wiesbaden: Friedr. Vieweg I& SohnVerlagsgesellschaft mbH) pp. 347-58. URL https://richardgauthier.academia.edu/research.
- Gauthier, Richard (2019) Quantum-entangled superluminal double-helix photon produces a relativistic su- perluminal quantum-vortex zitterbewegung electron and positron. Journal of Physics: Conference Series 1251(1), 012016. ISSN 1742-6596. doi:10.1088/1742-6596/1251/1/012016.
- Chae, Kyu-Hyun (2023) Breakdown of the newton?einstein standard gravity at low acceleration in internal dynamics of wide binary stars. The Astrophysical Journal 952(2), 128. ISSN 1538-4357. doi:10.3847/ 1538-4357/ace101.