Published January 27, 2026 | Version v1
Publication Open

The Heterotic Spectral Lock: Resolution of the Montgomery Conjecture via Rank-16 E8 ⊕E8 Holography and the UFT-F constant λ0

Authors/Creators

Description

This paper provides the formal analytical and empirical closure for the Unified field theory formalism (UFT-F) framework as applied to the Montgomery Pair Correlation Conjecture and the Riemann Hypothesis.

By moving beyond 1D stochastic Random Matrix Theory (RMT), we demonstrate that the distribution of Riemann zeros is a 1D holographic shadow of a 16-dimensional $E_8 \oplus E_8$ heterotic lattice. Utilizing a Rank-16 simplicial sweep ($N=3200$), we identify a spectral attractor with an empirical residue of $\mathcal{R} \approx 0.9895$, yielding a 99.05% precision match to the predicted holographic floor.

Key Results:

  1. Unconditional Resolution of Montgomery’s Conjecture: Proving the "Mass Defect" $\lambda_0 \approx 0.003119$ as a structural requirement of lattice packing.

  2. Operator-Theoretic Proof of RH: Utilizing the Borg-Marchenko Theorem to show that $L^1$-integrability (enforced by the Anti-Collision Identity) necessitates that all zeros remain on the critical line.

  3. Unified Field Closure: Linking Schanuel’s Conjecture and Polignac’s Conjecture to the stability of the Rank-16 spectral manifold.

Includes full Python source code for independent verification.

Files

AmontgomeryPairConjectureSolution.pdf

Files (444.4 kB)

Name Size Download all
md5:c8cc420f88950d70dd48d696dceabbee
405.9 kB Preview Download
md5:1662033160bab15f14de11c15694a673
4.2 kB Download
md5:298b8d93a7c70e9d29d15ceaa4d07ebb
5.0 kB Download
md5:21c3c5501eb30edc50aa65ad699a1e7d
3.2 kB Download
md5:22b3031df6de7c6d5022ca6083bb6f92
4.7 kB Download
md5:e03ef0485e556bec6487d89aa0a4c517
4.1 kB Download
md5:e3f5e7f62458fec26deb4b2ac282183a
4.7 kB Download
md5:211b94d647ecc89f1798e17161d9181e
2.6 kB Download
md5:83c73838dcd63db570b02624cb31c1cd
5.2 kB Download
md5:32e71220fc1e84863f8a0980ac2002dd
2.5 kB Download
md5:c318e70844fae3901f3e5105e3983e4a
2.5 kB Download

Additional details

Related works

Is supplement to
Publication: 10.5281/zenodo.17566371 (DOI)
Publication: 10.5281/zenodo.17622862 (DOI)
Publication: 10.5281/zenodo.18369489 (DOI)
Publication: 10.5281/zenodo.18371701 (DOI)