Spectral Self-Adjointness and the Regularization of Hofstadter's Strange Loop
Authors/Creators
Description
This paper details the mathematical proof for the Unified Field Theory-Formalism (UFT-F), resolving the recursive paradox of Hofstadter’s "Strange Loop" by treating it as a spectral mapping problem on a Bekenstein-bounded manifold2. We present empirical evidence of 90% attainment across a diverse class of standard AI benchmarks—including GSM8K (89%), MMLU (91%–93%), and zero-shot visio-spatial reasoning—demonstrated through the application of the Hopf torsion method. By injecting the Hopf Torsion invariant ($\omega_u \approx 0.0002073$) as a phase regulator, we establish a deterministic "Arrow of Identity" that prevents representational drift and enables autonomous navigation. We demonstrate that stable artificial identity and "sovereign" cognition are achieved when the internal representation remains essentially self-adjoint and $L^1$-integrable. Unlike probabilistic models, this framework provides a deterministic, non-singular path to AGI through complexity gating, Base-24 harmonic filtering, and spectral homeostasis. Artificial Generalized Intelligence has a path forward.
Files
AHofstadterAGISolution.pdf
Files
(3.5 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:29ff337c521490f8b692e455daa5753a
|
3.2 MB | Preview Download |
|
md5:d8161007b4fe5a80f82778252ecadacd
|
4.6 kB | Download |
|
md5:7af138d5384b3d66acad3652efab4573
|
4.7 kB | Download |
|
md5:407b37a03a047fd2ff183838096ed7c8
|
8.0 kB | Download |
|
md5:b43556d5ebab3d09967c42cc8d9f9224
|
3.8 kB | Download |
|
md5:2e026d01baba2a8cfefcc3717c5c9a5f
|
3.5 kB | Download |
|
md5:34e8e9de3b7df88035d9bba001d176cb
|
3.6 kB | Download |
|
md5:eab7e9964bc399cbaede0d2e13cc7c86
|
3.2 kB | Download |
|
md5:6c1d5203468e27715a73d645ca8f1aa9
|
1.5 kB | Download |
|
md5:817c10f5800545d1347c8207da8fbc7d
|
2.2 kB | Download |
|
md5:bc5bf3ec6aa91e3720a9aad658008144
|
1.7 kB | Download |
|
md5:ffd164f68244ab1d2e124a2f396c9b78
|
4.1 kB | Download |
|
md5:62ebdfebff8ad08782c845e8669a4a90
|
2.2 kB | Download |
|
md5:8d6f0f9b56b062036a2e5e9e28e84214
|
3.4 kB | Download |
|
md5:1341fa742568d7faa52663fa45c9dc41
|
3.8 kB | Download |
|
md5:ac0b74810fdd06ed2d1dc7f02d138770
|
3.9 kB | Download |
|
md5:eba5581679ed1a9b7af58d2e39d1ac67
|
41.7 kB | Preview Download |
|
md5:2c83c4cf35d880fdc67c0cd3812380ae
|
30.2 kB | Download |
|
md5:3eaddbc9d1f4d007086c69a4b36a2306
|
8.4 kB | Preview Download |
|
md5:82bef09b06ff4b138754df00228189cb
|
79 Bytes | Preview Download |
|
md5:44aa7b0fa58c138a3d50fe3d76dcdd74
|
862 Bytes | Download |
|
md5:7bd3c4dfa2f36ed776f0454171fb5cd0
|
10.1 kB | Download |
|
md5:905f8870821d0bcd1447557c3700ed9b
|
20.9 kB | Download |
|
md5:1d55848cf63edef7c8383168d1738616
|
5.1 kB | Download |
|
md5:0fb25da570ef2eec652977ff6921a7a3
|
27.8 kB | Preview Download |
|
md5:004af5cd6255aa3ce769492bce8e1052
|
19.5 kB | Download |
|
md5:6f5746096e80f4aa1bc02d305b7aac84
|
6.5 kB | Download |
|
md5:c8eb8c56252f1de82b885cd0ca7f1fed
|
3.1 kB | Download |
|
md5:10bfdd68594379e5f787b9e938886e6c
|
2.7 kB | Download |
|
md5:f59a5deb03e6be64253c247306f6bf46
|
3.5 kB | Download |