Published January 10, 2026
| Version v1
Preprint
Open
The Infoton: A Fundamental Particle of Information-Energy
Description
By applying Einstein's mass-energy equivalence (E = mc²) to Landauer's thermodynamic bound on information (E ≥ k_B T ln(2)), I derive a fundamental unit of information-energy: the Infoton, with mass 3.19 × 10⁻³⁸ kg. I propose this represents a minimum quantized unit of information on the scale of sub-atomic particles and discuss measurement implications for information-fundamental physics.
Files
Infoton.pdf
Files
(307.8 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:540a5c88ead2f5e1e1c272a04fec1993
|
307.8 kB | Preview Download |
Additional details
Software
- Repository URL
- https://github.com/JanuaryNWalker/Infoton
- Development Status
- Wip
References
- Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17, 891. https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf
- Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5, 183–191. https://doi.org/10.1147/rd.53.0183
- Vopson, M.M. (2022). Experimental protocol for testing the mass–energy–information equivalence principle. AIP Advances, 12, 035311. https://doi.org/10.1063/5.0087175
- Wheeler, J.A. (1989). Information, physics, quantum: The search for links. Proceedings of the 3rd International Symposium Foundations of Quantum Mechanics, Tokyo, Japan, 354–368. https://philpapers.org/archive/WHEIPQ.pdf
- Schlosshauer, M. (2019). Quantum decoherence. Physics Reports, 831, 1–57. https://doi.org/10.1016/j.physrep.2019.10.001
- Harrington, P.M., Mueller, E., & Murch, K. (2022). Engineered dissipation for quantum information science. arXiv:2202.05280. https://arxiv.org/abs/2202.05280