Published January 5, 2026 | Version v1.0.0
Software Open

MARVEL: Multi-Agent Research Validator & Enabler using LLMs

Authors/Creators

  • 1. MIT Kavli Institute for Astrophysics and Space Research

Description

MARVEL v1.0.0 — Initial public release (accompanying MARVEL manuscript)

This release is the archival, citeable snapshot of the MARVEL codebase accompanying the manuscript:

"MARVEL: A Multi‑Agent Research Validator and Enabler using LLMs"

The MARVEL framework is a locally deployable, open-source system for domain-aware QA and assisted research with a fast path for simple queries and an optional DeepSearch mode for multi-step retrieval and synthesis.

A public demo is available at: https://ligogpt.mit.edu/marvel

What's included in this release

  • marvel.py — Streamlit application (MARVEL-Standard + MARVEL-DeepSearch)
  • config/ — configuration YAMLs (models, retrieval, data, prompts, etc.)
  • scripts/ — setup + evaluation tooling
  • Evaluation datasets: scripts/evaluation/datasets/
    • See: scripts/evaluation/datasets/README.md for file descriptions + schema

Quickstart (minimal)

  1. Create conda environment (Linux/macOS/Windows):
  • See README.md → "Conda environment setup"
  • Helper: scripts/setup/setup_conda_env.py
  1. Local inference (recommended): install Ollama + pull default models:
  • See README.md → "Local LLM inference with Ollama"
  • Defaults are defined in config/models.yaml
  1. Select/build a FAISS vector store:
  • Choose dataset via config/data.yaml (DocPDF, LatexData, TextData, JSONLData, or combined ALL_V2)
  • FAISS stores persist under ./faiss/<DatasetName>/
  1. Launch: streamlit run marvel.py

Optional services

  • Groq (cloud LLM inference): set GROQ_API_KEY in config/retrieval.yaml
  • Tavily (web search): set TAVILY_API_KEY in config/retrieval.yaml

Citation

  • Use GitHub "Cite this repository" (CITATION.cff) or cite the arXiv paper.

Notes

If you use this software, please cite it as below.

Files

Nikhil-Mukund/marvel-v1.0.0.zip

Files (4.0 MB)

Name Size Download all
md5:d451651328e3cd74d6a866825c4ef2b6
4.0 MB Preview Download

Additional details

Related works