Published December 23, 2025 | Version 1.0
Preprint Open

Phase and Scalar Time: A Systems-Theoretic Framework for Temporal Organization and Measurement

  • 1. Independent Researcher; danceScape, Burlington, Ontario, Canada

Description

Scientific inquiry predominantly represents time as a scalar quantity—duration, speed, frequency—optimized for measurement and comparison. While this representation is highly effective for optimization problems, it frequently produces conceptual tension when applied to systems governed by synchronization, coordination, and meaning. This paper introduces a general systems distinction between scalar time (time as magnitude) and phase time (time as position within a structured cycle), and demonstrates their asymmetric but bidirectional relationship across domains.

Drawing on examples from athletics, dance, biology, and calendrical systems, the paper shows that phase alignment can function as a primary control variable generating scalar acceleration as emergent outcome. Conversely, scalar optimization can induce implicit regularities (often rhythmic) that become epistemically actionable only when reconstructed by observers as explicit phase structure.

A novel temporal pattern taxonomy—distinguishing alternation cycles, directional gradients, and developmental cycles—clarifies why lunar calendars emphasize observable morphological phases while solar calendars emphasize annual displacement. This framework helps reduce persistent category errors surrounding objectivity and measurement, providing conceptual foundation for phase-first approaches in science and embodied practice.

Developed using Human–AI Collaborative Research (HAICR) methodology (Tang, 2024d), this work was produced through structured human-led engagement with large language model tools. All conceptual decisions and final claims remain under sole human authorship.

Author: Lit Meng (Robert) Tang Complete Research Archive: www.dancescape.com/research

Files

Tang_2025_Phase-and-Scalar-Time_Systems-Theoretic-Framework_v1.0.pdf

Files (185.9 kB)

Additional details

Related works

Is supplement to
Preprint: 10.5281/zenodo.17773361 (DOI)

Dates

Submitted
2025-12-23
Scientific inquiry predominantly represents time as a scalar quantity—duration, speed, frequency—optimized for measurement and comparison. While this representation is highly effective for optimization problems, it frequently produces conceptual tension when applied to systems governed by synchronization, coordination, and meaning. This paper introduces a general systems distinction between scalar time (time as magnitude) and phase time (time as position within a structured cycle), and demonstrates their asymmetric but bidirectional relationship across domains. Drawing on examples from athletics, dance, biology, and calendrical systems, the paper shows that phase alignment can function as a primary control variable generating scalar acceleration as emergent outcome. Conversely, scalar optimization can induce implicit regularities (often rhythmic) that become epistemically actionable only when reconstructed by observers as explicit phase structure. A novel temporal pattern taxonomy—distinguishing alternation cycles, directional gradients, and developmental cycles—clarifies why lunar calendars emphasize observable morphological phases while solar calendars emphasize annual displacement. This framework helps reduce persistent category errors surrounding objectivity and measurement, providing conceptual foundation for phase-first approaches in science and embodied practice. Developed using Human–AI Collaborative Research (HAICR) methodology (Tang, 2024d), this work demonstrates HAICR's capacity to support novel theoretical synthesis through iterative conceptual refinement.