Structural Retention Index (SRI): A Collapse Index Extension for Orthogonal Stability Assessment
Description
This paper introduces the Structural Retention Index (SRI), a metric that quantifies how well AI systems preserve internal decision structure under perturbation. SRI measures stability dimensions orthogonal to the Collapse Index (CI), providing comprehensive dual-signal failure detection.
Key Results:
- Perfect complementarity: CI + SRI = 1.000 (inverse measures of the same stability phenomenon)
- Equal discriminative power: Both achieve AUC=0.874 for error detection
- Vastly outperforms confidence alone (AUC=0.171)
- Identifies hidden instability: 20 Type II cases (4.0%) show internal confidence shifts without visible label flips
Validation:
AG News 4-class text classification (500 base examples × 4 variants = 2,000 predictions). Reproducible dataset, generation pipeline, and validation metrics publicly available.
Methodology:
SRI computation remains proprietary to prevent adversarial optimization. Validation outputs are independently verifiable. This approach balances scientific transparency with IP protection, consistent with industry practices for evaluation frameworks.
Reproducibility:
- Dataset:
agnews_ci_sri_demo.csv(2,000 rows) - Generation script:
generate_agnews_demo.py(MIT license) - Validation script:
validate_metrics.py(MIT license) - GitHub: https://github.com/collapseindex/ci-sri
License: CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives)
Contact: ask@collapseindex.org | https://collapseindex.org
Files
structural-retention-index-v1.0.pdf
Files
(189.6 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:216cafc427d37bf3c965999742761418
|
189.6 kB | Preview Download |
Additional details
Related works
- Cites
- Preprint: 10.5281/zenodo.17718180 (DOI)
Software
- Repository URL
- https://github.com/collapseindex/ci-sri/
- Programming language
- Python
- Development Status
- Active