Published December 15, 2025 | Version v1
Dataset Open

Anisotropic Spheres (ASPH)

  • 1. ROR icon EURECAT Centre Tecnològic de Catalunya
  • 2. ROR icon Pompeu Fabra University
  • 3. ROR icon Universitat de Vic - Universitat Central de Catalunya

Description

Overview

The Anisotropic Spheres (ASPH) dataset is a synthetic benchmark dataset designed for evaluating neural rendering methods and inverse rendering algorithms that handle anisotropic reflectance under complex illumination. This dataset was created to support the research presented in ShinyNeRF.

Dataset Description

ASPH contains controlled renderings of four distinct sphere instances, each rendered under multiple high-dynamic-range (HDR) environment maps. The dataset varies environment maps to study their effects on appearance under different lighting conditions.

Key Features

  • Simple, controlled geometry: Sphere primitives eliminate geometric complexity, allowing researchers to focus exclusively on material and illumination interactions
  • Systematic parameter variations: Structured sweeps across anisotropic and roughness material properties enable controlled experiments on each object
  • Multiple illumination conditions: Each sphere is rendered under diverse HDR environment maps to capture behavior across different lighting scenarios
  • High-quality ground truth: Physically-based rendering provides accurate reference data for benchmarking

Dataset Contents

  • RGB renderings: Rendered images (270×270 pixels) for each sphere-environment combination
  • Material property maps: Ground truth maps including RGB, surface normals, tangent vectors, anisotropy (ani), roughness (ro), and depth (alpha)
  • Blender scene files: Complete scene setups for reproducibility and custom rendering configurations

Files

preview.png

Files (211.8 MB)

Name Size Download all
md5:a06a7d04491a5a8d6bf3921129621f16
30.8 MB Download
md5:c35d89d683d4ccaa2312df71f3e8562f
24.2 MB Preview Download
md5:a232313b021e4319aff8f997aea87464
28.5 MB Download
md5:03056399eca2c1504785c834f4484c9b
22.7 MB Preview Download
md5:7e0d446148f7725accc827f84d717fbd
29.2 MB Download
md5:bab395a89488976a59590606be07b3a9
25.0 MB Preview Download
md5:60971cbb1556dc55118a24a9cae73084
29.4 MB Download
md5:300a07fa96635e31b596987a73b4c1c6
22.1 MB Preview Download
md5:2d728543837f5fdc13ecbee3bbbd563f
109.5 kB Preview Download