Published November 21, 2025 | Version 1.0
Software Open

MS-Net: Multi-Similarity based network annotation for untargeted metabolomics: Workflow ressources

  • 1. ROR icon Université de Toulouse

Description

 

Description

MS-Net is a KNIME workflow for confident metabolite annotation in LC-MS/MS untargeted metabolomics. It combines mass spectral similarity networks, molecular structure similarity, and taxonomic knowledge to prioritize structural annotations within large candidate spaces.

Key Features

  • Network-based annotation propagation from high-confidence seeds (spectral library matches, authentic standards)
  • Multi-level confidence scoring system (Levels 1-5) with taxonomic enrichment
  • Composite Link Score integrating Tanimoto similarities (full-molecule + scaffold), MS/MS cosine similarity, and in silico confidence
  • Taxonomic filtering via Coconut 2.0 natural products database
  • Rich metadata output with ClassyFire and NPClassifier chemical ontologies and Database identifiers (CID, Kegg...)
  • Compatible with LC-MS processing tools: MZmine, MS-DIAL, Sirius-CSI, MS-Finder

Requirements

Software

  • KNIME Analytics Platform ≥ 5.2 (https://www.knime.com)

Input Data Sources

  • MZmine or MS-DIAL: Feature detection, MS/MS spectral library matching, molecular networking
  • Sirius ≥ 5.8 or MS-Finder: In silico structure prediction with CSI:FingerID and MSNovelist

Quick Start

  1. Read the tutorial
  2. Install KNIME 5.2+ and required extensions 
  3. Import workflow into KNIME (File → Import KNIME Workflow)
    1. For MZmine/MSDial and Sirius-based annotation: MSNet-Sirius.knwf
    2. For MSDial and MSFinder-based annotation: MSNet-MSFinder.knwf
  4. Configure input file paths (feature table, MSS network, Sirius annotations)
  5. Adjust parameters (taxonomic filters, α weighting, fingerprint type)
  6. Execute workflow

Typical runtime: 5-30 minutes, depending on dataset size

Outputs

  • Annotated feature table with confidence levels and chemical metadata
  • Feature intensity matrix for statistical analysis
  • Mass spectral similarity network with annotations
  • Tanimoto structural similarity network
  • Summary statistics and annotation quality metrics

Citation

If you use MS-Net in your research, please cite:

Pereira Francisco V, Duthen S, Crossay E, et al. (2025)
Pereira Francisco, Duthen, Crossay et al. MS-Net: Multi-Similarity based network annotation for untargeted metabolomics, 27 November 2025, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-8174529/v1]

Workflow DOI: 10.5281/zenodo.17669288

Documentation

Full documentation, including detailed installation instructions, parameter optimization guides, troubleshooting tips, and example datasets is provided in the accompanying README.md file.

 

  • Contact: guillaume.marti@utoulouse.fr

License

CeCILL-B Free Software License Agreement

Version

v1.0.0 (Initial release)

Compatible with KNIME ≥ 5.2

Keywords: metabolomics, mass spectrometry, annotation, molecular networking, Tanimoto similarity, natural products, KNIME, workflow

Upload Contents:

  • MS-Net_workflow.knwf - Main KNIME workflow
  • Quick reference.md - Short documentation
  • TutoMS-Net: Complete step-by-step guide based on MZ-Mine/Sirius annotation processing
  • MZbatch files: Import in MZmine for raw LC-MS data processing

 

Files

License.txt

Files (914.6 MB)

Name Size Download all
md5:e71b3a691f1130974bd35e8808f0f9c5
93.4 kB Download
md5:0de68c6590f55307bb2964c804a0cae4
121.7 kB Download
md5:8128a73c61cae9e6392293bf1d0422f9
23.0 kB Preview Download
md5:f245e1497e623b4d132bde2efc6b8bb5
7.7 kB Preview Download
md5:6280f0980683a8f30c7a109428fe66fa
460.6 MB Download
md5:b921771174d69820271624f8f7ca5480
446.6 MB Download
md5:be232aae93735b727a2042abd0a7ef38
7.2 MB Preview Download

Additional details

Related works

Is supplement to
Publication: 10.21203/rs.3.rs-8174529/v1 (DOI)