MS-Net: Multi-Similarity based network annotation for untargeted metabolomics: Workflow ressources
Description
Description
MS-Net is a KNIME workflow for confident metabolite annotation in LC-MS/MS untargeted metabolomics. It combines mass spectral similarity networks, molecular structure similarity, and taxonomic knowledge to prioritize structural annotations within large candidate spaces.
Key Features
- Network-based annotation propagation from high-confidence seeds (spectral library matches, authentic standards)
- Multi-level confidence scoring system (Levels 1-5) with taxonomic enrichment
- Composite Link Score integrating Tanimoto similarities (full-molecule + scaffold), MS/MS cosine similarity, and in silico confidence
- Taxonomic filtering via Coconut 2.0 natural products database
- Rich metadata output with ClassyFire and NPClassifier chemical ontologies and Database identifiers (CID, Kegg...)
- Compatible with LC-MS processing tools: MZmine, MS-DIAL, Sirius-CSI, MS-Finder
Requirements
Software
- KNIME Analytics Platform ≥ 5.2 (https://www.knime.com)
Input Data Sources
- MZmine or MS-DIAL: Feature detection, MS/MS spectral library matching, molecular networking
- Sirius ≥ 5.8 or MS-Finder: In silico structure prediction with CSI:FingerID and MSNovelist
Quick Start
- Read the tutorial
- Install KNIME 5.2+ and required extensions
- Import workflow into KNIME (File → Import KNIME Workflow)
- For MZmine/MSDial and Sirius-based annotation: MSNet-Sirius.knwf
- For MSDial and MSFinder-based annotation: MSNet-MSFinder.knwf
- Configure input file paths (feature table, MSS network, Sirius annotations)
- Adjust parameters (taxonomic filters, α weighting, fingerprint type)
- Execute workflow
Typical runtime: 5-30 minutes, depending on dataset size
Outputs
- Annotated feature table with confidence levels and chemical metadata
- Feature intensity matrix for statistical analysis
- Mass spectral similarity network with annotations
- Tanimoto structural similarity network
- Summary statistics and annotation quality metrics
Citation
If you use MS-Net in your research, please cite:
Pereira Francisco V, Duthen S, Crossay E, et al. (2025)
Pereira Francisco, Duthen, Crossay et al. MS-Net: Multi-Similarity based network annotation for untargeted metabolomics, 27 November 2025, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-8174529/v1]
Workflow DOI: 10.5281/zenodo.17669288
Documentation
Full documentation, including detailed installation instructions, parameter optimization guides, troubleshooting tips, and example datasets is provided in the accompanying README.md file.
- Contact: guillaume.marti@utoulouse.fr
License
CeCILL-B Free Software License Agreement
Version
v1.0.0 (Initial release)
Compatible with KNIME ≥ 5.2
Keywords: metabolomics, mass spectrometry, annotation, molecular networking, Tanimoto similarity, natural products, KNIME, workflow
Upload Contents:
MS-Net_workflow.knwf- Main KNIME workflowQuick reference.md- Short documentation- TutoMS-Net: Complete step-by-step guide based on MZ-Mine/Sirius annotation processing
- MZbatch files: Import in MZmine for raw LC-MS data processing
Files
License.txt
Files
(914.6 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:e71b3a691f1130974bd35e8808f0f9c5
|
93.4 kB | Download |
|
md5:0de68c6590f55307bb2964c804a0cae4
|
121.7 kB | Download |
|
md5:8128a73c61cae9e6392293bf1d0422f9
|
23.0 kB | Preview Download |
|
md5:f245e1497e623b4d132bde2efc6b8bb5
|
7.7 kB | Preview Download |
|
md5:6280f0980683a8f30c7a109428fe66fa
|
460.6 MB | Download |
|
md5:b921771174d69820271624f8f7ca5480
|
446.6 MB | Download |
|
md5:be232aae93735b727a2042abd0a7ef38
|
7.2 MB | Preview Download |
Additional details
Related works
- Is supplement to
- Publication: 10.21203/rs.3.rs-8174529/v1 (DOI)