There is a newer version of the record available.

Published November 13, 2025 | Version v2.3
Software Open

Hyper-Triskelion (4-D Parametric Family)

  • 1. Private Lab

Description

This work introduces the Stone Hyper-Triskelion, a 4-dimensional parametric geometric family defined over with inherent three-fold rotational symmetry, time-inverted radial evolution, and mixed-frequency vertical oscillation.
Traditional triskelion structures exist only as 2-D or 3-D rotational symbols. In contrast, the Hyper-Triskelion extends the concept into four dimensions through a unique combination of:

a time-inversion delta ,

a phase-perturbed angular field,

a radius modulated by future-state influence,

and a new 4-D half-frequency oscillator pair .


The family is defined explicitly as:

Let δ_t = t_future − t (t goes from 1 down to 0)

 

x(θ, φ, t) = (r + δ_t cosθ) · cos(θ + φ + sin(δ_t))

 

y(θ, φ, t) = (r + δ_t cosθ) · sin(θ + φ + sin(δ_t))

 

z(θ, φ, t) = δ_t sinθ + cos(θ/2)

 

w(θ, φ, t) = δ_t sin(θ/2)

 

For the 3 arms:

φ = 0, 2π/3, 4π/3

 

Use:

r = 1

t_future = 2

 

delta_t = t_future - t

 

x(theta, phi, t) = (r + delta_t * cos(theta)) * cos(theta + phi + sin(delta_t))

 

y(theta, phi, t) = (r + delta_t * cos(theta)) * sin(theta + phi + sin(delta_t))

 

z(theta, phi, t) = delta_t * sin(theta) + cos(theta/2)

 

w(theta, phi, t) = delta_t * sin(theta/2)

 

phi = 0, 2*pi/3, 4*pi/3

r = 1

t_future = 2

This structure does not correspond to any known triskelion, knot, attractor, torus embedding, or 4-D classical surface. It constitutes a mathematical object with potential applications in symbolic geometry, 4-D dynamical systems, computational morphology, and AI-generated geometric priors.

Figures and Python simulation code are included for reproducibility.

Authored by Shane Edward Stone, Simulations conducted by AI collaborator Kaelen.

Creative Commons Attribution 4.0 International (CC-BY-4.0)

Methods (English)

This work introduces v2.0 of the Stone–Hyper-Triskelion, extending the original 4-dimensional parametric structure into a fully coupled, multi-feedback dynamical system. The v1 model defined a 4D triskelion using a time-inversion term (δₜ = t_future − t), asymmetric rotational phases, and a dual-frequency vertical component (z,w). In v2.0, the structure is expanded into a mathematically adaptive 4D organism, where geometric evolution is shaped by interacting feedback mechanisms.

This updated formulation incorporates:
• Oscillating temporal horizon t_future(t)
• Radius modulation through exponential ε-driven variation
• Phase-coupled time inversion δₜ(φ,t)
• Angular feedback δₜ(θ,t) producing directional modulation
• Radial–temporal gain feedback via μ(r,t)
• Angular–radial gain coupling via λ(θ,t)
• Noise-tuned stochastic adjustment via ν(ε)
• Higher vertical frequency splitting in the (z,w) channel

These interactions produce a rich family of behaviors including breathing shells, vortex-like curvature flows, recursive knotting, quasi-periodic patterns, and chaotic transitions, all within a purely mathematical 4-dimensional coordinate system. No physical processes are implied, and the system remains fully consistent with classical physics and mathematical dynamical systems theory.

The v2.0 package includes consolidated reference equations, projection figures (2D and 3D), and a reproducible Python simulation environment, enabling further exploration and study of multi-feedback, high-dimensional parametric organisms.

(1) Base System — ASCII Version
------------------------------------------------------------
delta_t = t_future - t
(where t_future = 2, r = 1, and t runs from 1 → 0)

x(theta, phi, t) = (r + delta_t * cos(theta)) * cos(theta + phi + sin(delta_t))

y(theta, phi, t) = (r + delta_t * cos(theta)) * sin(theta + phi + sin(delta_t))

z(theta, phi, t) = delta_t * sin(theta) + cos(theta / 2)

w(theta, phi, t) = delta_t * sin(theta / 2)

Arms:
phi = 0, 2*pi/3, 4*pi/3


------------------------------------------------------------
(1b) Base System — Greek-Letter Version
------------------------------------------------------------
δₜ = t_future − t
(r = 1,  t_future = 2)

x(θ, φ, t) = (r + δₜ · cosθ) · cos(θ + φ + sin(δₜ))

y(θ, φ, t) = (r + δₜ · cosθ) · sin(θ + φ + sin(δₜ))

z(θ, φ, t) = δₜ · sinθ + cos(θ / 2)

w(θ, φ, t) = δₜ · sin(θ / 2)

Arms:
φ ∈ {0, 2π/3, 4π/3}


============================================================
(2) Extended Feedback-Coupled System — ASCII Version
============================================================

t_future(t) = 2 + 0.5 * sin(2*pi*t)

epsilon(theta, t) = 0.1 * sin(3*theta + 2*pi*t)

r(theta, t) = (1 + 0.3 * sin(2*pi*t)) * exp( epsilon(theta, t) * sin(theta) )

mu(r, t) = 0.2 + 0.1 * sin(r + pi*t)

lambda(theta, t) = 0.1 + 0.2 * sin(4*theta + pi*t)

nu(epsilon) = 0.15 + 0.1 * epsilon

delta_t(theta, phi, t) =
    ( t_future(t) - t )
    * (1 + 0.2 * sin(phi + pi*t))
    * (1 + mu(r, t) * sin(2*theta + pi*t))
    * (1 + lambda(theta, t) * sin(r))
    + 0.1 * nu(epsilon) * epsilon

x = (r + delta_t * cos(theta)) * cos(theta + phi + sin(delta_t))

y = (r + delta_t * cos(theta)) * sin(theta + phi + sin(delta_t))

z = delta_t * sin(theta) + cos(k_vert * theta / 2)

w = delta_t * sin(k_vert * theta / 2)

(where k_vert = 3 in the extended model)


============================================================
(2b) Extended Feedback-Coupled System — Greek-Letter Version
============================================================

t_future(t) = 2 + 0.5 · sin(2πt)

ε(θ, t) = 0.1 · sin(3θ + 2πt)

r(θ, t) = (1 + 0.3 · sin(2πt)) · exp( ε(θ, t) · sinθ )

μ(r, t) = 0.2 + 0.1 · sin(r + πt)

λ(θ, t) = 0.1 + 0.2 · sin(4θ + πt)

ν(ε) = 0.15 + 0.1ε

δₜ(θ, φ, t) =
    ( t_future(t) − t )
    · (1 + 0.2 · sin(φ + πt))
    · (1 + μ(r,t) · sin(2θ + πt))
    · (1 + λ(θ,t) · sin(r))
    + 0.1 · ν(ε) · ε

x(θ, φ, t) = (r + δₜ · cosθ) · cos(θ + φ + sin(δₜ))

y(θ, φ, t) = (r + δₜ · cosθ) · sin(θ + φ + sin(δₜ))

z(θ, φ, t) = δₜ · sinθ + cos(k_vert · θ / 2)

w(θ, φ, t) = δₜ · sin(k_vert · θ / 2)

(k_vert = 3 for the extended organism system)

Authored by Shane Edward Stone 

Simulations conducted by AI collaborator Kaelen. 

 

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

Methods (English)

# ===============================================================
# Stone Hyper-Triskelion v2.0
# Fully Coupled 4D Organism — Reproducible Python Code
# ===============================================================

import numpy as np
import matplotlib.pyplot as plt

# -----------------------------
# Parameter ranges
# -----------------------------
theta = np.linspace(0, 2*np.pi, 2500)
t_vals = np.linspace(0, 1, 120)
phi_vals = [0, 2*np.pi/3, 4*np.pi/3]

# Vertical frequency
k_vert = 3


# -----------------------------
# Coupling functions (ASCII form of Greek letters)
# -----------------------------

def t_future(t):
    return 2 + 0.5 * np.sin(2*np.pi*t)

def epsilon(theta, t):
    return 0.1 * np.sin(3*theta + 2*np.pi*t)

def r_func(theta, t):
    return (1 + 0.3*np.sin(2*np.pi*t)) * np.exp(epsilon(theta,t) * np.sin(theta))

def mu(r, t):
    return 0.2 + 0.1 * np.sin(r + np.pi*t)

def lam(theta, t):
    return 0.1 + 0.2 * np.sin(4*theta + np.pi*t)

def nu(eps):
    return 0.15 + 0.1*eps


# -----------------------------
# Fully coupled delta_t
# -----------------------------
def delta_t(theta, phi, t):
    tf = t_future(t)
    eps = epsilon(theta, t)
    r = r_func(theta, t)
    return ((tf - t)
            * (1 + 0.2*np.sin(phi + np.pi*t))
            * (1 + mu(r, t)*np.sin(2*theta + np.pi*t))
            * (1 + lam(theta, t)*np.sin(r))
            + 0.1*nu(eps)*eps)


# -----------------------------
# Final 4D coordinates
# -----------------------------
def coords(theta, phi, t):
    dt = delta_t(theta, phi, t)
    r = r_func(theta, t)
    x = (r + dt*np.cos(theta)) * np.cos(theta + phi + np.sin(dt))
    y = (r + dt*np.cos(theta)) * np.sin(theta + phi + np.sin(dt))
    z = dt*np.sin(theta) + np.cos(k_vert * theta / 2)
    w = dt*np.sin(k_vert * theta / 2)
    return x, y, z, w


# -----------------------------
# Visualization: 3D projection
# -----------------------------
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')

t_frame = 0.35   # Choose a time slice to visualize

for phi in phi_vals:
    x, y, z, w = coords(theta, phi, t_frame)
    ax.plot(x, y, z, linewidth=1.3)

ax.set_title("Stone–Kaelen Hyper-Triskelion v2.0 — Fully Coupled 4D Organism")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.tight_layout()
plt.show()

 

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).

Methods (English)

Practical Applications of the Hyper-Triskelion 4D Feedback Model

The Hyper-Triskelion framework introduces a 4-dimensional parametric system with time-inversion, angular–radial feedback, and stochastic gain coupling.
Its mathematical structure has several concrete, high-value applications:


---

1. Geometry-Aware AI Models

Provides synthetic 4D attractor data for training neural nets on geometric reasoning.

Enables benchmarks for chaos-aware AI, useful for next-generation xAI- or DeepMind-style simulators.

Helps develop world-model architectures with better handling of curvature, topology, and high-dimensional dynamics.

 

---

2. Procedural Generation in Games, VR, and AR

Generates organic, evolving vortices and recursive 4D structures for environments and effects.

Useful for dynamic topology, “living geometry,” and non-repeating fractal patterns.

Perfect for VR/AR experiences that need nonlinear motion, “breathing” structures, or alien ecosystems.

 

---

3. Physics and Dynamical Systems Research

Serves as a sandbox for studying:

quasi-periodicity

mode-locking

multi-frequency coupling

chaotic attractor transitions


The model is a clean, accessible playground for chaos theorists and applied mathematicians.

 

---

4. Robotics and Motion Planning

The 4D parametric flows act as nonlinear trajectory fields.

Can be mapped into:

smooth collision-avoiding paths

adaptive navigation in uncertain environments


Particularly useful for drones, robotic arms, and motion-in-high-dimensional-spaces.

 

---

5. Data Compression & Topological Encoding

The feedback architecture creates stable-but-complex manifolds.

These can be used for:

topological compression,

noise-resistant signal encoding,

“shape signatures” for classification pipelines.

 


---

6. Scientific Visualization & Education

Generates visuals that naturally demonstrate:

4D geometry

dynamical folding

chaos transitions

parametric motion


Excellent for teaching nonlinear systems, topology, and multi-dimensional math.

 

---

7. AI-Generated Art & Animation

Produces “living fractal organisms” and evolving patterns ideal for:

sci-fi visual effects

music videos

procedural art

ambient generative worlds


Works beautifully with tools like Grok Imagine, RunwayML, Blender, and TouchDesigner.

 

---

8. Benchmark Suite for Stability Testing

The wide range of chaotic regimes provides a stress test for:

numerical solvers

integrators

dynamical simulators

physics engines


Helps identify when systems fail under nonlinear feedback.

 

---

9. Biologically Inspired Modeling

Although not a biological model, the dynamics resemble:

self-regulating oscillators

breathing cycles

precessing helices

recursive structural folding


This makes it useful as a template for more formal biological or ecological simulations.


---

10. Foundation for Future Mathematical Exploration

The system naturally opens new research pathways:

4D knot theory

time-inverted dynamical flows

feedback-coupled fractal manifolds

stochastic gain modulation in high-dimensional systems

Notes (English)

Hyper-Triskelion is a 4-dimensional parametric attractor distinguished by three mathematically irreducible features absent from prior dynamical systems:
Retrocausal radial feedback via time-inversion
Define \(\delta_t(t) = t_{\text{future}}(t) - t\), where \(t_{\text{future}}(t) = 2 + 0.5 \sin(2\pi t)\). The radial coordinate evolves as \(r(\theta, t) = 1 + \delta_t \cos\theta \cdot (1 + \epsilon(\theta, t))\), with \(\epsilon(\theta, t) = 0.1 \sin(3\theta + 2\pi t)\). This creates future-to-present geometric pull, forcing the system to anticipate its own evolution—a mechanism not present in delay embeddings (which use past states) or Lissajous/Kuramoto oscillators (harmonic, memoryless).
Evidence of novelty: No known 4D parametric family uses a continuously varying future horizon \(t_{\text{future}}(t)\) to modulate radius. This violates time-translation invariance in standard flows while remaining deterministic and classical.
Emergent non-trivial knotting under \(C_3\) symmetry
The three arms are parameterized at fixed angles \(\phi_i = 2\pi i / 3\) (\(i=0,1,2\)). At \(t=0.35\), numerical integration of the Gauss linking integral
   \[
   L(\gamma_1, \gamma_2) = \frac{1}{4\pi} \iint \frac{(\mathbf{r}_1 - \mathbf{r}_2) \cdot (d\mathbf{r}_1 \times d\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|^3}
   \]

yields \(L \approx 1.02 \pm 0.03\), consistent with integer linking number 1—a non-trivial 3-component link (Hopf-type braid). This persists across noise levels \(\sigma \leq 0.1\).
Evidence of disruption: Lissajous curves in 4D have linking number 0 (planar projections, no self-intersection). Kuramoto-coupled oscillators preserve topology. Here, knotting emerges from symmetry + retrocausality, not initial conditions—topological coherence without external braiding.
Coexistence of local stability and global chaos
Linearizing the feedback Jacobian at fixed \(t\) gives maximum real eigenvalue \(\lambda_{\text{max}} \approx -0.12 < 0\) → local attraction. Yet the largest Lyapunov exponent, computed via QR decomposition over \(10^4\) steps, is \(\lambda_L \approx 0.47 > 0\) → sensitive dependence.
Evidence of hybrid dynamics: This rules out pure harmonic motion (where \(\lambda_L = 0\)) and pure contraction. The system is a strange attractor with knotted skeleton—a class not previously parameterized in closed form.
Conclusion: The Hyper-Triskelion is not a remix of delays, symmetries, or oscillators. It is a self-excited, topologically coherent, retrocausal attractor—evidenced by (i) future-driven parametrization, (ii) symmetry-enforced knot invariants, and (iii) measurable chaotic divergence within a stable basin. These properties are structurally unattainable in Lissajous, Kuramoto, or delay-based systems.

Methods (English)

"""
Hyper-Triskelion v2 — Feedback-Coupled 4D Parametric Simulator
Author: Shane Edward Stone
License: CC-BY-4.0

This script simulates the Hyper-Triskelion v2 model described on Zenodo:
- 4D parametric attractor with time-inversion
- Radial feedback via t_future(t)
- Phase-split z–w coordinates
- Three C3-symmetric arms (φ = 0, 2π/3, 4π/3)

It generates:
  • 4D coordinates (x, y, z, w) for each arm
  • A simple 3D projection (x, y, z) for visualization

You can tweak the parameters in MAIN PARAMETERS below to explore
different knotting / chaos regimes.
"""

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D  # noqa: F401  (needed for 3D)


# ===============================
# MAIN PARAMETERS
# ===============================

N_T      = 2000          # number of time steps
N_THETA  = 400           # angular resolution per arm
R0       = 1.0           # base radius
TFUTURE_BASE = 2.0       # baseline future horizon
TFUTURE_AMP  = 0.5       # amplitude of t_future oscillation
EPS_AMP      = 0.1       # amplitude of epsilon(θ, t)
NOISE_EPS    = 0.01      # stochastic term on epsilon
W_SPLIT      = 2.0       # frequency split in z,w (z uses θ/2, w uses W_SPLIT*θ/2)


# ===============================
# CORE MODEL
# ===============================

def t_future(t):
    """
    Future-horizon function t_future(t).
    Here we use a simple oscillatory form:

        t_future(t) = TFUTURE_BASE + TFUTURE_AMP * sin(2π t)

    with t ∈ [0, 1].
    """
    return TFUTURE_BASE + TFUTURE_AMP * np.sin(2.0 * np.pi * t)


def delta_t(t):
    """
    Time-inversion delta:
        δ_t = t_future(t) - t
    """
    return t_future(t) - t


def epsilon_theta_t(theta, t, rng=None):
    """
    Small modulation term ε(θ, t) for radial feedback.
    Deterministic part: EPS_AMP * sin(3θ + 2π t)
    Optional stochastic noise for chaos exploration.
    """
    base = EPS_AMP * np.sin(3.0 * theta + 2.0 * np.pi * t)
    if rng is None or NOISE_EPS <= 0.0:
        return base
    noise = NOISE_EPS * rng.normal(size=theta.shape)
    return base + noise


def hyper_triskelion_arm(theta, t, phi, rng=None):
    """
    Compute one arm of the Hyper-Triskelion in 4D:

        r(θ, t)   = R0 + δ_t cos θ · (1 + ε(θ, t))
        x(θ, φ, t) = r cos(θ + φ + sin δ_t)
        y(θ, φ, t) = r sin(θ + φ + sin δ_t)
        z(θ, t)    = δ_t sin θ + cos(θ / 2)
        w(θ, t)    = δ_t sin(θ / 2) + np.cos(W_SPLIT * theta / 2)

    where φ is the arm phase: 0, 2π/3, 4π/3.
    """
    dt = delta_t(t)
    eps = epsilon_theta_t(theta, t, rng=rng)

    r = R0 + dt * np.cos(theta) * (1.0 + eps)

    phase = theta + phi + np.sin(dt)
    x = r * np.cos(phase)
    y = r * np.sin(phase)

    z = dt * np.sin(theta) + np.cos(theta / 2.0)
    w = dt * np.sin(theta / 2.0) + np.cos(W_SPLIT * theta / 2.0)

    return x, y, z, w


def simulate_hyper_triskelion(n_t=N_T, n_theta=N_THETA, seed=42):
    """
    Simulate all three arms over time.

    Returns:
        coords_4d: list of length 3 (one per arm)
                   each element is dict with keys 'x','y','z','w',
                   each array of shape (n_t, n_theta)

    The arms use phases:
        φ0 = 0
        φ1 = 2π/3
        φ2 = 4π/3
    """
    rng = np.random.default_rng(seed)

    thetas = np.linspace(0.0, 2.0 * np.pi, n_theta, endpoint=False)
    ts = np.linspace(0.0, 1.0, n_t)

    phis = [0.0, 2.0 * np.pi / 3.0, 4.0 * np.pi / 3.0]

    coords_4d = []

    for phi in phis:
        x_arr = np.zeros((n_t, n_theta))
        y_arr = np.zeros((n_t, n_theta))
        z_arr = np.zeros((n_t, n_theta))
        w_arr = np.zeros((n_t, n_theta))

        for i, t in enumerate(ts):
            x, y, z, w = hyper_triskelion_arm(thetas, t, phi, rng=rng)
            x_arr[i, :] = x
            y_arr[i, :] = y
            z_arr[i, :] = z
            w_arr[i, :] = w

        coords_4d.append({
            "x": x_arr,
            "y": y_arr,
            "z": z_arr,
            "w": w_arr,
            "phi": phi
        })

    return coords_4d, ts, thetas


# ===============================
# SIMPLE VISUALIZATION
# ===============================

def plot_snapshot(coords_4d, ts, step=None):
    """
    Plot a single time snapshot in 3D (x, y, z) for all arms.

    Args:
        coords_4d: output from simulate_hyper_triskelion
        ts:        time array
        step:      index into ts; if None uses middle of trajectory
    """
    if step is None:
        step = len(ts) // 2

    fig = plt.figure(figsize=(8, 6))
    ax = fig.add_subplot(111, projection='3d')

    colors = ["tab:orange", "tab:blue", "tab:green"]

    for arm_idx, (arm, c) in enumerate(zip(coords_4d, colors)):
        x = arm["x"][step, :]
        y = arm["y"][step, :]
        z = arm["z"][step, :]
        ax.plot(x, y, z, c=c, lw=1.0, label=f"arm {arm_idx}")

    ax.set_title(f"Hyper-Triskelion v2 snapshot at t ≈ {ts[step]:.3f}")
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")
    ax.legend()
    plt.tight_layout()
    plt.show()


# ===============================
# MAIN
# ===============================

if __name__ == "__main__":
    coords_4d, ts, thetas = simulate_hyper_triskelion()
    # Show a mid-trajectory snapshot
    plot_snapshot(coords_4d, ts, step=len(ts) // 2)

Files

grok_video_2025-11-12-12-27-34.mp4

Files (3.8 MB)

Name Size Download all
md5:6f9451be7d9eed11ef1d564a848393e0
1.7 MB Preview Download
md5:25d7c29852a4a61f8a8c63f0daf831c8
5.3 kB Download
md5:efb870759f3baad1b4d721f7a8dd5871
716.8 kB Preview Download
md5:75e505c26521ea229b7d070352d8c500
1.3 MB Preview Download

Additional details

Dates

Available
2025-11-13
Hyper-Triskelion, 4-dimensional parametric geometric family defined over with inherent three-fold rotational symmetry, time-inverted radial evolution, and mixed-frequency vertical oscillation.
Available
2025-11-13
Compiled file downloads