Published November 11, 2025 | Version v1
Publication Open

The UFT-F Spectral Framework: Empirical Validation of the Anti-Collision Identity (ACI) via Computational Collapse

Authors/Creators

Description

This **standalone computational companion** to the UFT-F Spectral Framework presents **reproducible numerical evidence** for the **Anti-Collision Identity (ACI)** — a conjectured L¹-integrability condition on the defect field Ψ_M(x) that collapses arithmetic invariants into spectral data.

Originally introduced in "The UFT-F Spectral Resolution of the Tamagawa Number Conjecture" (November 7, 2025), the ACI is claimed to unconditionally resolve the **Tamagawa Number Conjecture (TNC)**, **Birch and Swinnerton-Dyer (BSD)**, and provide a unified spectral lens for the **Clay Millennium Problems**.

This **new repository** delivers **two independent computational validations**:

1. **O(1) Spectral Predictor**  
   A non-iterative, fixed-arithmetic algorithm that factors composite cofactors up to **37 bits** using a spectral torsion invariant Λ(N). It empirically computes exact factors without search, loops, or iteration — demonstrating **Q-constructibility** consistent with ACI.

2. **2D Schrödinger Beilinson–Bloch Validation (Rank-1 Case)**  
   High-resolution finite-difference simulation of H_A = −Δ_A + V_A(x,y) for the motive A = E₁ × E₂ (rank(CH²(A)) = 1). The code detects a **kernel eigenvalue at E ≈ 2.007**, within **0.35% of the critical energy E_crit = 2.0**, matching expected analytic rank.

**Key Results:**
- ACI collapse is **empirically observable** in tested arithmetic domains.
- Fixed-term spectral models capture **exact arithmetic structure** up to the **Anti-Collision Boundary (ACB ≈ 37 bits)**.
- The code is **deterministic, open, and safe** — no cryptographic implications.

**This is NOT a proof** of TNC, BSD, or any Millennium Problem.  
It is **transparent, falsifiable computational evidence** supporting the **plausibility** of the UFT-F spectral conjecture.

**Files:**
- `UFT-F_ACI_Computational_Validation.pdf` – Full paper with theory, code, and results
- `uft_f_o1_factorizer.py` – O(1) spectral factorizer (MIT)
- `bbc_validation.py` – 2D kernel detection (MIT)

**Reproducibility:**  
Python 3 + `numpy`, `scipy`, `decimal`. Runs on standard hardware.

**License:**  
- Paper: CC-BY-4.0  
- Code: MIT

**Related:**  
Original theoretical paper (v1): https://doi.org/10.5281/zenodo.17566371

Files

UFT-F_ACI_Empirical_Validation_v2.pdf

Files (409.5 kB)

Name Size Download all
md5:bc89f97a3f5ce596bded6220dae04574
4.7 kB Download
md5:398e7ac135e704040d7fb9e412d75a24
401.3 kB Preview Download
md5:98ac59c00d37a683425c1dd13ae580f5
3.6 kB Download

Additional details

Related works

Is supplement to
Publication: 10.5281/zenodo.17566371 (DOI)