Counterfactual Echo Gain (CEG): Future-Aware Metriplectic Assistance Yields Gate-Certified Echo Improvement
Authors/Creators
Contributors
Project member:
Description
Summary:
Original proposal description:
This is a T4 preregistration for an experiment that tests whether a metriplectic, model-aware assisted time-reversal can improve echo fidelity in the Void Dynamics Model (VDM). We define the preregistered metric Counterfactual Echo Gain (CEG) and a set of strict physics gates (J-Noether drift, M-monotonicity / H-theorem, and energy-matching) that must be satisfied. The primary hypothesis is that the median CEG across preregistered seeds will be ≥ 0.05 under the gates and controls. No results or artifacts are included here — this deposit documents the exact predictions, machine-readable specs, and provenance (commit SHA) prior to running the preregistered experiments.
Original results description:
A structure‑preserving, metriplectic Strang‑composed KG⊕RD solver is paired with a preregistered, equal‑work assisted‑echo meter (CEG). Under strict J‑Noether, M‑Lyapunov, and Strang order gates, the instrument exhibits a statistically positive counterfactual echo gain (medianλ_\lambdaλ CEG =0.054552=0.054552=0.054552 at λ=0.5\lambda=0.5λ=0.5, n=12n=12n=12 seeds), with energy parity and invariants within machine‑precision tolerances. Artifacts (CSV/JSON/PNG) and seeds are pinned for reproduction.
Files
T4_RESULTS_CEG_AssistedECHO.pdf
Files
(30.3 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:f9b905b5bd4ff230843b9fad86a13125
|
15.9 MB | Preview Download |
|
md5:50a667640d331fb05e88ca8bfa0781f2
|
255.6 kB | Preview Download |
|
md5:9d0e60fdf84aca6b18931d0643f0a145
|
5.6 MB | Preview Download |
|
md5:636a7de9cd01cb8d6018517867c9116e
|
123.5 kB | Preview Download |
|
md5:3132234e2b06735179b79527647e32e1
|
67.3 kB | Preview Download |
|
md5:b2caa7d6549e2ac45347ec57212c8f6b
|
142.8 kB | Preview Download |
|
md5:984645c801548d28e621ef98ec3cc87d
|
66.8 kB | Preview Download |
|
md5:65e3a918b123b6281a6fe4ad1b9f8dce
|
70.2 kB | Preview Download |
|
md5:cae3e77ec74bb0ffaeae24c45c77418e
|
31.9 kB | Preview Download |
|
md5:c1af43d05dad012ae6da5252d563b72b
|
38.1 kB | Preview Download |
|
md5:a824e1a8a286c581de675ac9894ae581
|
27.4 kB | Preview Download |
|
md5:0d0b1ebbb4ca0649aaa1528be6af9dd6
|
186.5 kB | Preview Download |
|
md5:34fb75f4bb7bbe09d31cd43db1786c8a
|
36.4 kB | Preview Download |
|
md5:bb66779cb99fab2906e8851b32d52309
|
286.2 kB | Preview Download |
|
md5:471a945e267109ca381030b01ee1fbc8
|
16.2 kB | Preview Download |
|
md5:5798b91c6481339cde3856557fc0ae63
|
1.2 MB | Preview Download |
|
md5:9995dc52b74c13b7d7a9eb85c3f17c76
|
6.2 MB | Preview Download |
|
md5:cb91547003993cb2adf744bcbb371ecd
|
9.4 kB | Preview Download |
Additional details
Additional titles
- Other (En)
- Counterfactual Echo Gain (CEG): A Metriplectic Assisted-Echo Experiment Proposal in VDM
Dates
- Submitted
-
2025-11-04Added to Zenodo for provenance
- Updated
-
2025-11-10Attached preregistered results
Software
- Repository URL
- https://github.com/justinlietz93/Prometheus_VDM/tree/main/Derivation/code/physics/metriplectic
- Programming language
- Python
- Development Status
- Active
References
- J. K. Lietz, T4 — Counterfactual Echo Gain (CEG): A Metriplectic Assisted-Echo Experiment in VDM (Preregistration / Proposal), 2025. Zenodo / repository draft (preregistration text). Commit: 80ee5476e4f887fed3c34534a99daa878f55382f. Contact: justin@neuroca.ai. ORCID: 0009-0008-9028- 1366.
- J. K. Lietz, VDM: Metriplectic Assisted-Echo — code and experiment artifacts (repository snapshot), 2025. Git repository, commit 80ee5476e4f887fed3c34534a99daa878f55382f (useful for provenance).
- VDM EQUATIONS Registry, EQUATIONS Registry — discrete action, Euler–Lagrange and RD/KG update forms, 2024. VDM instrument registry (instrument manual for assisted-echo experiment).
- E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer, 2006.
- G. Strang, "On the construction and comparison of difference schemes," SIAM Journal on Numerical Analysis, 1968. (Classic reference for operator splitting — Strang splitting.)
- P. J. Morrison, "Foundations of metriplectic (Hamiltonian + dissipative) formulations," review articles and technical notes (see Morrison's bracket papers on Hamiltonian/dissipative combinations; add DOI if required).
- L. Boltzmann, "Further Studies on the Thermal Equilibrium of Gas Molecules," Wiener Berichte, 1872. (Historical source for H-theorem / entropy increase.)
- A. M. Turing, "The Chemical Basis of Morphogenesis," Philosophical Transactions of the Royal Society B, 1952. (Classic RD / pattern formation reference.)
- C. R. Harris et al., "Array programming with NumPy," Nature, 2020. (Cite NumPy for array/numerical founda- tions.)
- P. Virtanen et al., "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python," Nature Methods, 2020.
- Python Software Foundation, Python Language Reference, version 3.11+, 2023. https://www.python.org/.
- M. Frigo and S. G. Johnson, "FFTW: Fastest Fourier Transform in the West," software/library, 1998–2005.
- J. K. Lietz, APPROVAL.json — preflight and approval manifest (excerpt), 2025. (Derivation/code/physic- s/metriplectic/APPROVAL.json.)
- J. K. Lietz, LICENSE, 2025. Project root LICENSE file included with repository and Zenodo deposit.
- J. K. Lietz, echo specs, 2025.(Derivation/code/physics/metriplectic/schemas/echospec−v1.schema.json.)
- Google Quantum AI and Collaborators. Observation of constructive interference at the edge of quantum ergodicity. Nature, 646:825–830, 2025. doi:10.1038/s41586-025-09526-6. URL https://doi.org/10.1038/ s41586-025-09526-6.
- Google Quantum AI. Supplementary information (moesm1 esm) for s41586-025-09526-6. https: //static-content.springer.com/esm/art%3A10.1038%2Fs41586-025-09526-6/MediaObjects/ 41586_2025_9526_MOESM1_ESM.pdf, 2025. Supplementary methods and extended echo diagrams.
- X. Li, Y. Zhang, and et al. Quantum computation of molecular geometry via nuclear spin echoes. 2025. URL https://arxiv.org/abs/2510.19550.
- Philip J. Morrison. Bracket formulation for irreversible classical fields. Physica D: Nonlinear Phenomena, 18 (1-3):410–419, 1986.
- Hans Christian Öttinger and Miroslav Grmela. Dynamics and thermodynamics of complex fluids. i. develop- ment of a general formalism. Physical Review E, 56(6):6620–6632, 1997. doi:10.1103/PhysRevE.56.6620.
- Miroslav Grmela and Hans Christian Öttinger. Dynamics and thermodynamics of complex fluids. ii. illustra- tions of a general formalism. Physical Review E, 56(6):6633–6655, 1997. doi:10.1103/PhysRevE.56.6633.
- Gilbert Strang. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5(3):506–517, 1968. doi:10.1137/0705041.
- E. L. Hahn. Spin echoes. Physical Review, 80:580–594, 1950. doi:10.1103/PhysRev.80.580.
- Asher Peres. Stability of quantum motion and fidelity. Physical Review A, 30:1610–1615, 1984. doi:10.1103/PhysRevA.30.1610.
- R. A. Jalabert and H. M. Pastawski. Environment-independent decoherence rate in classically chaotic systems. Physical Review Letters, 86:2490–2493, 2001. doi:10.1103/PhysRevLett.86.2490.
- T. Gorin, T. Prosen, T. H. Seligman, and M. Znidaric. Dynamics of loschmidt echoes and fidelity decay. Physics Reports, 435(2-5):33–156, 2006. doi:10.1016/j.physrep.2006.09.003.
- A. I. Larkin and Y. N. Ovchinnikov. Quasiclassical method in the theory of superconductivity. Soviet Journal of Experimental and Theoretical Physics, 28:1200, 1969.
- Stephen H. Shenker and Douglas Stanford. Black holes and the butterfly effect. Journal of High Energy Physics, 2014(03):067, 2014. doi:10.1007/JHEP03(2014)067.
- J. Maldacena, S. H. Shenker, and D. Stanford. A bound on chaos. Journal of High Energy Physics, 2016(08): 106, 2016. doi:10.1007/JHEP08(2016)106.
- Brian Swingle. Unscrambling the physics of out-of-time-order correlators. Nature Physics, 14:988–990, 2018. doi:10.1038/s41567-018-0295-5.
- Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, volume 31 of Springer Series in Computational Mathematics. Springer, 2 edition, 2006. doi:10.1007/3-540-30666-8.
- Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cambridge University Press, 2004. doi:10.1017/CBO9780511614118.
- Hans Christian Öttinger. Beyond Equilibrium Thermodynamics. Wiley, 2005. ISBN 978-0471666585. Miroslav Grmela. Multiscale thermodynamics. Entropy, 20(10):706, 2018. doi:10.3390/e20100706. 14
- Data-driven reconstruction of a multivariate langevin equation to model complex systems. Derivation/References/Reaction-Diffusion/ data-driven-reconstruction-of-a-multivariate-langevin-equation-to-model-complex-systems. pdf. PDF artifact in repository.
- Justin K. Lietz. Echoes of mind: Google's otoc vs vdm's metriplectic echo. PDF artifact within repository, 2025b. GoPenAI article, Oct 2025. PDF available in repository root.
- Justin K. Lietz. A logarithmic first integral for the logistic on site law in void dynamics (code + figures + manifests). https://doi.org/10.5281/zenodo.17220869, 2025a.
- Justin K. Lietz and Inc. Neuroca. Prometheus_void-dynamics_model. https://github.com/ justinlietz93/Prometheus_VDM, 2025. Public repository with metriplectic harness, artifacts, and result slugs.