Published November 5, 2025 | Version v1
Dataset Open

Arctic diel and circadian acoustic pattern of Orcas, Fin, and Humpback whales revealed by deep learning from two months of continuous recordings, supporting data

  • 1. EDMO icon University of Pavia
  • 2. Centre International d'Intelligence Artificielle en Acoustique Naturelle (CIAN) https://cian.lis-lab.fr, Toulon France
  • 3. Université de Toulon, Aix Marseille Univ, CNRS, DYNI, LIS, Toulon France
  • 1. Centre International d'Intelligence Artificielle en Acoustique Naturelle (CIAN) https://cian.lis-lab.fr, Toulon France
  • 2. Université de Toulon, Aix Marseille Univ, CNRS, LIS, Marseille, France
  • 3. Valhalla expeditions
  • 4. Longitude 181
  • 5. Université de Toulon, Aix Marseille Univ, CNRS, DYNI, LIS, Toulon France

Description

This dataset is a sample of the YOLO detection made in Seglvik that supported the findings published in the journal article: 

"Arctic diel and circadian acoustic pattern of Orcas, Fin, and Humpback whales revealed by deep learning from two months of continuous recordings".

The species_detection_sample.csv is a sample of the detection data information on which presence and detection rate measurments were based.

A soundfile is provided for each detection. To find the detections corresponding to specific sound files, one should select on the voc_ID column.

The file .ipynb is the code used to generate the figures and perform statistical analyzes.

Files

datasets.zip

Files (17.8 GB)

Name Size Download all
md5:80d16fa4f557899109f8d63f98161a85
17.8 GB Preview Download
md5:2343c2eb0b90ee0839260397922c60b4
1.7 MB Preview Download
md5:850c45e1ed3ef405340fe698bbc06aa5
6.5 MB Preview Download
md5:05e8e09e4f6d8a75a0c2d06b109ebe7c
32.4 kB Preview Download
md5:d46bc9db8ce691922b2f44424950c189
2.9 MB Preview Download